
Stream Cipher
Enocoro

Specification Ver. 2.0
Hitachi, Ltd.

2 February 2010

Copyright c©2009-2010 Hitachi, Ltd. All rights reserved.
1

Enocoro-128v2 Specification Hitachi, Ltd.

Contents

1 Introduction 3
1.1 History . 3
1.2 Organization of the document 3

2 Preliminaries 3
2.1 Notations . 4
2.2 Data Structure . 4

2.2.1 Data Representation 4
2.2.2 Addition . 4
2.2.3 Multiplication . 5
2.2.4 Definition of GF(24) 5

2.3 Pseudorandom Number Generator 6
2.4 Panama-like Keystream Generator 6

3 Common Specification of Enocoro v2 7
3.1 Internal State . 7
3.2 Function ρ . 7

3.2.1 Linear Transformation 8
3.2.2 Sbox . 8

3.3 Function λ . 9
3.4 Output function Out . 9
3.5 Inputs and Initialization Function 9

4 Enocoro-128v2 10
4.1 Parameters . 10
4.2 Initialization Function . 10

5 Data Encryption Using Enocoro-128v2 11
5.1 Choice of A Key and An Initial Vector 11
5.2 Encryption and Decryption 12

A Sbox s8 13

B Test Vectors 14

Copyright c©2009-2010 Hitachi, Ltd. All rights reserved.
2

Enocoro-128v2 Specification Hitachi, Ltd.

1 Introduction

This document provides the specification of a stream cipher Enocoro and its

underlying pseudorandom number generator (PRNG).

1.1 History

Enocoro is a family of stream ciphers which has 11 parameters. The com-

mon specification of Enocoro firstly published in [2], which is referred to as

Enocoro v1 in this document. [2] recommended a set of parameters for 80-bit

security and another set of parameters for 128-bit security, which are referred

to as Enocoro-80v1 and Enocoro-128v1. Later, the recommended set of pa-

rameters for 128-bit security was changed (so Enocoro-128v1 is obsoleted) in

[3] and it is referred to as Enocoro-128v1.1.

The common part of pseudorandom number generation algorithm de-

scribed in this document is slightly different from Enocoro v1 and we refer

to the updated common algorithm as Enocoro v21. In addition, we define

a new concrete algorithm for 128-bit security and we call it Enocoro-128v2.

Enocoro-128v2 and Enocoro-128v1.1 differ only in the characteristic polyno-

mial ϕ8 over the finite field GF(28) and in the initialization process2.

1.2 Organization of the document

First of all, the notations are defined and a number of mathematical concepts

are explained in Section 2. The specification of the common part of the

algorithm Enocoro v2 is given in Section 3. Then the recommended set of

parameters and the initialization function is defined in Section 4.

2 Preliminaries

In this section we give some notations and knowledge of the underlying math-

ematical constructions.

1The difference of Enocoro v1 and Enocoro v2 is only their characteristic polynomials
of GF(28).

2See [4] for the reasons for the change of the specification.

Copyright c©2009-2010 Hitachi, Ltd. All rights reserved.
3

Enocoro-128v2 Specification Hitachi, Ltd.

2.1 Notations

⊕ Bitwise XOR operation
∧ Bitwise AND operation
|| Concatenation of two strings

≫m n Rotation n bits to the right (A m-bit register is expected)
≪m n Rotation n bits to the left (A m-bit register is expected)
0x Hexadecimal prefix

2.2 Data Structure

The elemental data size of Enocoro is 8-bit, namely a byte.

2.2.1 Data Representation

Enocoro uses operations defined over finite fields GF(28) and GF(24). The

elements of a binary extension field is defined by a polynomial whose coeffi-

cients are 0 or 1. A polynomial is represented by a bit string. For example,

the bit string 0x2 corresponds to the monomial x. We dealt with only GF(28)

in this section for simple discussion. An element of GF(28) is given by a poly-

nomial of degree less than 8. Such a polynomial b7x
7 + b6x

6 + b5x
5 + b4x

4 +

b3x
3 + b2x

2 + b1x + b0 is represented by b7||b6||b5||b4||b3||b2||b1||b0, where bj is

0 or 1. For example, the polynomial x6 + x4 + x2 + x + 1 is represented by

0x57 = 01010111.

2.2.2 Addition

The sum of two polynomials over a finite field is the polynomial whose co-

efficients are given by the sum of corresponding coefficients modulo 2. In

other words the addition is calculated by bitwise XOR of two bit strings. For

example, the sum of 0x57 and 0xa3 is calculated as follows:

0x57 + 0xa3 = (x6 + x4 + x2 + x + 1) + (x7 + x5 + x + 1)

= x7 + x6 + x5 + x4 + x2

↔ 0xf4.

Copyright c©2009-2010 Hitachi, Ltd. All rights reserved.
4

Enocoro-128v2 Specification Hitachi, Ltd.

2.2.3 Multiplication

In order to fix the multiplication rule, a characteristic polynomial ϕ8 of de-

gree 8 is firstly defined. In the specification of Enocoro v2, the following

polynomial is used:

ϕ8(x) = x8 + x4 + x3 + x2 + 1.

The bit string corresponds to ϕ8(x) is 0x11d3.

The multiplication of the polynomial f(x) =
∑

aix
i by x is defined by

x · f(x) =
∑

aix
i+1 mod ϕ8(x).

For example,

0x02 · 0x87 = x · (x7 + x2 + x + 1)

= x8 + x3 + x2 + x

= (x4 + x3 + x2 + 1) + (x3 + x2 + x)

= x4 + x + 1

= 0x13.

The multiplication f(x) by xi for any positive integer i is defined by

induction. The multiplication of any two elements f(x) =
∑

aix
i, g(x) =∑

bix
i is defined by

f · g(x) =
14∑
i=0

i∑
j=0

(aj ∧ bi−j)x
i mod ϕ8(x).

2.2.4 Definition of GF(24)

Enocoro uses the multiplication over GF(24) as well as that over GF(28). The

representation of the elements and the operations are defined in the similar

manner to GF(28). An element of GF(24) is represented by 4-bit string

b3||b2||b1||b0, which corresponds to the polynomial b3x
3 + b2x

2 + b1x+ b0. The

characteristic polynomial ϕ4 for the finite field GF(24) is given by

ϕ4(x) = x4 + x + 1.

3Enocoro v1 uses ϕ8(x) = x8 + x4 + x3 + x + 1.

Copyright c©2009-2010 Hitachi, Ltd. All rights reserved.
5

Enocoro-128v2 Specification Hitachi, Ltd.

2.3 Pseudorandom Number Generator

A PRNG consists of a finite state machine (FSM), an initialization function

Init , and an output function Out . A FSM consists of a internal state (or

a register) S(t) depending on the clock and its update function Next . The

initialization function generates the initial internal state S(0) from the initial

inputs such as a secret key K and an initial vector I. The output function

generates output bits Z(t) from the internal state S(t) at each time t.

S(0) = Init(K, I),

Z(t) = Out(S(t)),

S(t+1) = Next(S(t)).

Internal State
Init

Initialization function
Keystream

Initial input (key, IV)

NextUpdate function

Out
Output function

Finite State Machine

S (t) z (t)

Figure 1: Pseudorandom Number Generator

2.4 Panama-like Keystream Generator

A Panama-like keystream generator (PKSG) is a class of PRNGs and is a

generalization of software oriented PRNG Panama [1]. The internal state

of a PKSG is separated into two: a state a(t) and a buffer b(t). The update

functions are denoted by ρ and λ respectively and both functions take the

other sub-internal state as a parameter. The whole update function Next is

a composition of ρ and λ.

(a(t+1), b(t+1)) = Next(S(t)) = (ρ(a(t), b(t)), λ(a(t), b(t))).

Copyright c©2009-2010 Hitachi, Ltd. All rights reserved.
6

Enocoro-128v2 Specification Hitachi, Ltd.

3 Common Specification of Enocoro v2

In this section, the specification of a family of PKSG Enocoro v2 is given.

Enocoro v2 has 11 parameters. Let the buffer size of Enocoro v2 in byte

be nb, the inputs from the buffer to the ρ function be bk1 , bk2 , bk3 , bk4 . The

parameters which define the λ function are denoted by q1, p1, q2, p2, q3, p3. It

is denoted by Enocoro(nb; k1, . . . , k4, q1, p1, . . . , q3, p3) if the parameters are

required to be explicitly described.

b0 bn b - 1bp 1
bq 1

bq 2
bp 2

bp 3
bq 3

a0 a1

s8

s8

s8

s8

L

a0 a1b0 bn b - 1bp 1
bq 1

bq 2
bp 2

bp 3
bq 3

z

Figure 2: Schematic view of Enocoro

3.1 Internal State

The state a consists of two bytes. The higher byte is denoted by a0 and the

lower byte is denoted by a1. The buffer b consists of nb bytes. They are

denoted by b0, b1, . . . , bnb−1 in rotation.

3.2 Function ρ

The update function of the state ρ of Enocoro v2 takes bk1 , . . . , bk4 as external

inputs. The ρ function consists of referring Sboxes, the linear transformation

L defined over GF(28), and XORings. In detail, the transformation is defined

Copyright c©2009-2010 Hitachi, Ltd. All rights reserved.
7

Enocoro-128v2 Specification Hitachi, Ltd.

as

u0 = a
(t)
0 ⊕ s8[b

(t)
k1

],

u1 = a
(t)
1 ⊕ s8[b

(t)
k2

],

(v0, v1) = L(u0, u1),

a
(t+1)
0 = v0 ⊕ s8[b

(t)
k3

],

a
(t+1)
1 = v1 ⊕ s8[b

(t)
k4

].

3.2.1 Linear Transformation

The transformation L of Enocoro v2 is chosen to be a linear transformation

with a 2-by-2 matrix over GF(28), which is defined as(
v0

v1

)
= L(u0, u1) =

(
1 1
1 d

)(
u0

u1

)
, d ∈ GF(28).

d = 0x02 is adopted in Enocoro v2.

3.2.2 Sbox

The Sbox (substitution box) s8 defines a permutation which maps 8-bit in-

puts to 8-bit outputs. It has also SPS structure and it consists of 4 small

Sboxes s4 which map 4-bit inputs to 4-bit outputs and a linear transformation

l defined by a 2-by-2 matrix over GF(24). The Sbox s4 is defined as

s4[16] = {1, 3, 9, 10, 5, 14, 7, 2, 13, 0, 12, 15, 4, 8, 6, 11}.
The linear transformation l is defined as

l(x, y) =

(
1 e
e 1

)(
x
y

)
, x, y, e ∈ GF(24)

Figure 3 shows how to construct the 8-by-8 Sbox s8. The Sbox s8 is

defined as

y0 = s4[s4[x0]⊕ e · s4[x1]⊕ 0xa],

y1 = s4[e · s4[x0]⊕ s4[x1]⊕ 0x5].

e = 0x04 is used for Enocoro v2. The output is rotated by 1 bit to the left

at the end.

s8[x] = (y0||y1) ≪8 1.

The table representation of the Sbox s8 is given in Appendix.

Copyright c©2009-2010 Hitachi, Ltd. All rights reserved.
8

Enocoro-128v2 Specification Hitachi, Ltd.

s4

s4

l

s8

s4

s4

0xa

0x5

<<< 1

Figure 3: Sbox s8

3.3 Function λ

The λ function of Enocoro consists of three feedbacks (XORings), XORing

a0 to the most right byte of the buffer bnb−1, and a byte-wise rotation of the

buffer. In detail, the transformation is defined as follows:

b
(t+1)
i = b

(t)
i−1, i 6= 0, q1 + 1, q2 + 1, q3 + 1,

b
(t+1)
0 = b

(t)
nb−1 ⊕ a

(t)
0 ,

b
(t+1)
qj+1 = b(t)

qj
⊕ b(t)

pj
, j = 1, 2, 3,

where pi − qi 6= pj − qj if i 6= j.

3.4 Output function Out

The output function of Enocoro v2 outputs the lower byte of the state.

Out(S(t)) = a
(t)
1 .

3.5 Inputs and Initialization Function

The way to set inputs (a key and an IV) and the initialization function for

each algorithm are defined in Section 4.2.

Copyright c©2009-2010 Hitachi, Ltd. All rights reserved.
9

Enocoro-128v2 Specification Hitachi, Ltd.

4 Enocoro-128v2

4.1 Parameters

Enocoro-128v2 is a PRNG which takes a 128-bit key input, a 64-bit initial

vector, and the following specified parameters:

nb = 32,

k1 = 2, k2 = 7, k3 = 16, k4 = 29,

p1 = 6, p2 = 15, p3 = 28,

q1 = 2, q2 = 7, q3 = 16.

4.2 Initialization Function

Firstly, the initialization function sets to the registers a key K, an IV I and

the initial constants C as follows:

b
(−96)
i = Ki, 0 ≤ i < 16,

b
(−96)
i+16 = Ii, 0 ≤ i < 8,

b
(−96)
24 = C0 = 0x66,

b
(−96)
25 = C1 = 0xe9,

b
(−96)
26 = C2 = 0x4b,

b
(−96)
27 = C3 = 0xd4,

b
(−96)
28 = C4 = 0xef,

b
(−96)
29 = C5 = 0x8a,

b
(−96)
30 = C6 = 0x2c,

b
(−96)
31 = C7 = 0x3b,

a
(−96)
0 = C8 = 0x88,

a
(−96)
1 = C9 = 0x4c.

Then the state is updated by the 96 iterations of two functions: one is

an XORing of the counter to b31 and the other is the update function Next .

The size of the counter is a byte. It is initialized by 0x01 and incremented

Copyright c©2009-2010 Hitachi, Ltd. All rights reserved.
10

Enocoro-128v2 Specification Hitachi, Ltd.

by the multiplication by 0x02 which is defined over the finite field GF(28).

In order to remove any ambiguity, we also define the initialization function

as the following pseudo-code:

Init (a[2], b[32], K[16], I[8]){

// set initial values

for (i = 0; i < 16; i++){ b[i] = K[i]; }

for (i = 0; i < 8; i++){ b[i+16] = I[i]; }

for (i = 0; i < 8; i++){ b[i+24] = C[i]; }

a[0] = C[8]; a[1] = C[9];

ctr = 1;

// update the state 96 times

for (r = 0; r < 96; r++){

b[31] ^= ctr;

ctr = gf256multiplication(ctr, 2);

Next(a, b);

}

}

a0 a1

s8

s8

s8

s8

L

a0 a1

b0 b2 b6 b7 b15 b16 b28 b29 b31

b0 b7 b16 b29 b31b3 b8 b17 b30

ctr

ctr

2

Figure 4: State update during the initialization of Enocoro-128v2

5 Data Encryption Using Enocoro-128v2

5.1 Choice of A Key and An Initial Vector

In general, the output sequence generated by any PRNGs is uniquely deter-

mined by the combination of the secret key K and the initial vector I. So it

Copyright c©2009-2010 Hitachi, Ltd. All rights reserved.
11

Enocoro-128v2 Specification Hitachi, Ltd.

is not allowed to use an identical combination twice. Especially, in case that

key streams are generated under the same key, different initial vectors must

be used.

5.2 Encryption and Decryption

A binary additive mode provides a data encryption mechanism using a PRNG

and it just combines the keystream and the plaintext by means of bitwise

XORs. The decryption is done by the same manner. Let p(t), c(t), z(t) be the

plaintext, the ciphertext, and the output byte at time t respectively. Then

the (byte-wise) binary additive encryption and decryption are defined by

c(t) = p(t) ⊕ z(t),

p(t) = c(t) ⊕ z(t).

References

[1] J. Daemen, C. Clapp, “Fast Hashing and Stream Encryption

with Panama,” Fast Software Encryption, FSE’98, Springer-Verlag,

LNCS 1372, pp.60–74, 1998.

[2] D. Watanabe and T. Kaneko, “A construction of light weight Panama-

like keystream generator,” IEICE Technical report, ISEC2007-78, 2007

(in Japanese).

[3] K. Muto, D. Watanabe and T. Kaneko, “Strength evaluation of Enocoro-

128 against LDA and its Improvement,” Symposium on Cryptography

and Information Security, SCIS 2008, 4A1-1, 2008 (in Japanese).

[4] D. Watanabe, K. Okamoto and T. Kaneko, “A Hardware-Oriented Light

Weight Pseudorandom Number Generator Enocoro-128v2,” Symposium

on Cryptography and Information Security, SCIS2010, 3D1-3, 2010 (in

Japanese).

Copyright c©2009-2010 Hitachi, Ltd. All rights reserved.
12

Enocoro-128v2 Specification Hitachi, Ltd.

A Sbox s8

The following array is the table representation of 8-bit Sbox s8.
s8[256] = {
99, 82, 26, 223, 138, 246, 174, 85, 137, 231, 208, 45, 189, 1, 36, 120,

27, 217, 227, 84, 200, 164, 236, 126, 171, 0, 156, 46, 145, 103, 55, 83,
78, 107, 108, 17, 178, 192, 130, 253, 57, 69, 254, 155, 52, 215, 167, 8,
184, 154, 51, 198, 76, 29, 105, 161, 110, 62, 197, 10, 87, 244, 241, 131,
245, 71, 31, 122, 165, 41, 60, 66, 214, 115, 141, 240, 142, 24, 170, 193,
32, 191, 230, 147, 81, 14, 247, 152, 221, 186, 106, 5, 72, 35, 109, 212,
30, 96, 117, 67, 151, 42, 49, 219, 132, 25, 175, 188, 204, 243, 232, 70,
136, 172, 139, 228, 123, 213, 88, 54, 2, 177, 7, 114, 225, 220, 95, 47,
93, 229, 209, 12, 38, 153, 181, 111, 224, 74, 59, 222, 162, 104, 146, 23,
202, 238, 169, 182, 3, 94, 211, 37, 251, 157, 97, 89, 6, 144, 116, 44,
39, 149, 160, 185, 124, 237, 4, 210, 80, 226, 73, 119, 203, 58, 15, 158,
112, 22, 92, 239, 33, 179, 159, 13, 166, 201, 34, 148, 250, 75, 216, 101,
133, 61, 150, 40, 20, 91, 102, 234, 127, 206, 249, 64, 19, 173, 195, 176,
242, 194, 56, 128, 207, 113, 11, 135, 77, 53, 86, 233, 100, 190, 28, 187,
183, 48, 196, 43, 255, 98, 65, 168, 21, 140, 18, 199, 121, 143, 90, 252,
205, 9, 79, 125, 248, 134, 218, 16, 50, 118, 180, 163, 63, 68, 129, 235
};

Copyright c©2009-2010 Hitachi, Ltd. All rights reserved.
13

Enocoro-128v2 Specification Hitachi, Ltd.

B Test Vectors

key[16] = {0}
iv[8] = {0}
output =
0x63 0xd7 0xda 0x6b 0x55 0x73 0x7f 0xcf
0x57 0x34 0xb6 0x77 0x3a 0xe7 0x72 0xe8
. . .

key[10] =
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}
iv[8] =
{0x00, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70}
output =
0xc8 0xc8 0xee 0x43 0x3b 0x0d 0xc0 0x40
0xe5 0x3b 0xc5 0x06 0xea 0x21 0xad 0x82
. . .

Copyright c©2009-2010 Hitachi, Ltd. All rights reserved.
14

