US011625168B2

a2 United States Patent

Tsuruya et al.

US 11,625,168 B2
Apr. 11,2023

(10) Patent No.:
45) Date of Patent:

(54) STORAGE DEVICE ACCELERATOR
PROVIDING AGGREGATION OF DIVIDED
PLAINTEXT DATA READ

(71) Applicant: Hitachi, Ltd., Tokyo (JP)

(72) Inventors: Masahiro Tsuruya, Tokyo (IP),
Nagamasa Mizushima. Tokyo (JP):
Tomohiro Yoshihara, Tokyo (IP);

Kentaro Shimada, Tokyo (JP)
(73)
(")

Assignee: HITACHI, LTD., Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 17/752,923

21

(22) Filed: May 25, 2022

(65) Prior Publication Data
US 2022/0291842 A1~ Sep. 15, 2022
Related U.S. Application Data

Continuation of application No. 17/172,206, filed on
Feb. 10, 2021, now Pat. No. 11,360,669.

(63)

(30) Foreign Application Priority Data

Apr. 1, 2020
Aug. 20, 2020

(IP)
(P)

2020-066145
2020-139199

(51) Int.CL
GOGF 3/06
GO6F 16/174
HO3M 7/30
US. CL
CPC

(2006.01)
(2019.01)
(2006.01)
(52)
GOGF 3/0608 (2013.01); GOGF 3/0641

(2013.01); GO6F 16/1744 (2019.01);

(58) Field of Classification Search
CPC .. GOGF 3/0608; GOGF 16/1744; GOGF 3/0641;
GOGF 3/0659; GOG6F 3/0661; FOGF
3/0673; HO3M 7/70
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

GOGF 16/215
707/E17.054

2011/0307471 Al* 12/2011 Sheinin

2014/0025886 Al 1/2014 Tanoue et al.

(Continued)

FOREIGN PATENT DOCUMENTS

3/2018
10/2018

Jp
WO

2018-037069 A
2018/179243 Al

OTHER PUBLICATIONS

Notice of Reasons for Refusal dated Feb. 17, 2022, issued in
corresponding Japanese Patent Application No. 2020-139199.

Primary Examiner — Tim T Vo
Assistant Examiner — Janice M. Girouard
(74) Attorney, Agent, or Firm — Mattingly & Malur, PC

(57) ABSTRACT

The storage device includes a first memory, a process device
that stores data in the first memory and reads the data from
the first memory, and an accelerator that includes a second
memory different from the first memory. The accelerator
stores compressed data stored in one or more storage drives
storing data, in the second memory, decompresses the com-
pressed data stored in the second memory to generate
plaintext data, extracts data designated in the process device
from the plaintext data, and transmits the extracted desig-
nated data to the first memory.

(Continued) 15 Claims, 15 Drawing Sheets
A 10
I] f?l o
St cPU 12| DRAM
129
122
Mee | dw
w(c
2 401
1
w1 [T
126 BEADP [\
| 123, [ACCELERATOR l A
BE I
W :isnas
MT"3mc

]

304A

130

P COMPC

| COMPB

DRIVE

304C

US 11,625,168 B2
Page 2

(52) US.CL
CPC .. GOG6F 3/0659 (2013.01); GOGF 3/0661
(2013.01); GOGE 3/0673 (2013.01); HO3M

7/70 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

2015/0324134 Al* 112015 Sendelbach GO6F 12/122
710/313

2017/0147624 Al 5/2017 Burger et al.

2018/0152733 Al 5/2018 Karaje et al.

2018/0173736 Al 6/2018 Watanabe

2019/0196746 Al 6/2019 Fujimoto et al.

* cited by examiner

U.S. Patent Apr.11,2023 Sheet 1 of 15 US 11,625,168 B2

FIG. 1

< NETWORK >
00 /\
et \

STORAGE DEVICE
. .
CTL-D 121 | FE FE 1 12 CTL-1
120 F iE
o~ N
D CPU 128 128 CPU D
RE 11og ﬁ 122 122 hm 19} R
A \-\,wf) o A
v MC L FESW FESW bd MC M
124 124
ey o
. 123
123, BEADP ng, 126 126;%\ BEADP
—1 - —
ACCELERATOR H o~ sy] ACCELERATOR

130 130 130 130

U.S. Patent Apr.11,2023 Sheet 2 of 15 US 11,625,168 B2

4 123
Vi =
26 N
COMPRESSION |
PROCESSING
§
CIRCUIT e
2 N CONTROL
DECOMPRESSION / CiRQﬁT
PROCESSING SMAC ”»
CIRCUIT
218
DATA INTEGRITY .
PROCESSING 212
CIRCUIT o
DRAM
I FPGA
\y\
210
220
DRAM ~
ACCELERATOR

U.S. Patent Apr.11,2023 Sheet 3 of 15 US 11,625,168 B2

FIG. 3A

301

x v o » 5 8 » 5 “
H o o RE B R o X ki
H s 3 A § 3 O S8 $3 Ol '

- 3 5 < B 3 B . 5

¥ » P N * oo - 3 . ¥ v 4 B +
x P & » e & o O]] 4

uuuuu
.....
.....
vy
‘‘‘‘‘
mmmmm

P
.....
nt

304 . ‘
N < - 60%

302 (304)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o

= = “~
321 322 323

U.S. Patent Apr. 11,2023

Sheet 4 of

FIG. 4

HOST WRITE ORDER

15 US 11,625,168 B2

L 4

301

004 § O

008 | 023

019 | 037

0077 016 |~

R

I 301

12 | 047

041 | 038

017 gﬁ%gﬁ

Jooo | 035 |~

:
i 303B

301

10w | o2

36§ 031 p~

L 303C

\\\\s

S R
06 X 007

U.S. Patent Apr.11,2023 Sheet 5 of 15 US 11,625,168 B2

(COMPARATIVE EXAMPLE)
A 10
1T FE
HE | pe———— D e ——— e CTL
N CPU Ny DRAM 304A
121 P
3048
1| COMPA
129 radiy)
SN COMPB | <
1‘4%_\ COMP C
FE || FFMC e
‘ s L
4{._3 PLAIN A 7 2 e
120 , T
L PLAIN B ’ﬁ_ e
A PLANG/]
401
1 | DATAX
27 | COMPRESSION
g 304A\\ DECOMPRESSION ENGINE
V 303A
[-
COMP A > PLANA |- s
3048 1_COMPE M. PLANE hoac
304c A4 COMPC > PLANC [T
15N
130
\v\
— LT
N |]
COMPA |~ 304A o~ 2048 COMPC
COMPB ~
304C
N~— DRIVE o

U.S. Patent Apr.11,2023 Sheet 6 of 15 US 11,625,168 B2

VAN 10
- .
= CTL
F
\?fz*e CPU 125 DRAM
‘ N
129
.
122
Y FE || M
SW C
" w0
o~
] | DATAX
124 7\ N/\
Yond [A1
126 BE ADP [\ \
\ 123 | ACCELERATOR s / \ -
> COMP A . | PLAIN | /"*v/aosa
oW ' ! 304B Z I,
N | COvPB > [priane Pl V] 303C
“ 4
COMPC > 4 PLANG 4
304C
\.\
(’._-‘———-—— \
_& /
304A .
COMPA 1+ 0B COMP G
COMPB —~
304C

S —— DRIVE

U.S. Patent Apr.11,2023 Sheet 7 of 15 US 11,625,168 B2
700
o~
701 702 703 04 705
Ny ey { (.
‘ \ COMPARATIVE E}{AMPLE\, EVBODIMENT 1
| componenT | TRANSFER
DIRECTION 8 kB 64 kB 54 kB
COMPRESSION| COMPRESSION | COMPRESSION
1| DRIVE 130 OuT 44544 20+30+26 20+30+26
2 IN 20+30+26
DRAM 220
3 ouT . 20+30+26
4 N 20+30+26
FPGA 210
5 ouT B4+64+64
8 IN . B54+04+64
DRAM 220
7 QuUT 8+8+8
§ | FESW122 TO DRAM 44544 20+30+76 8+8+8
9 I f+5+4 20+30+26
DRAM 125
10 ouT 44544 20+30+26
1] FESW R FROMDRAM | 4+5+4 20+30+26
12 | COMPRESSION IN 44544 20430426
DECOMPRESSION
13 | ENGINE 127 OuT 8+8+8 B4+64+64
14 | FESW 122 TO DRAM 8+8+8 (4+64+64
15 N 8+8+8 B4+64+64 8+8+8
18 OuT 8+8+8 ;
DRAM 125 :
17 N S+8+8
18 ouT 8+8+8 8+8+8 8+8+8
19 | FESW 122 FROMDRAM | 8+8+8 8+8+8 8+8+8
DRAM 220 INOUT 368
SUM| DRAM 125 INOUT 48 416 48
FE SW 122 TOIFROM 74 368 48

U.S. Patent

US 11,625,168 B2

Apr.11,2023 Sheet 8 of 15
(COMPARATIVE EXAMPLE}
, COMPRESSION
CPU EXPANSION ENGINE DRIVE
B
802
ISSUE READ Vad
COMMAND TO DRIVE > TRANSFER
COMPRESSED
DATA TO DRAM
, § OF CTL
STORE <
COMPRESSED DATA f— 803
A 4
REQUEST ™ 804
COMPRESSION
DECOMPRESSION
ENGINE TO
DECOMPRESS
COMPRESSED DATA DECOMPRESS
COMPRESSED b 805
DATA
EXTRACT PORTION
OF PLAINTEXT DATA)
\L ~ 806
FORMREAD DATA [~ 807
808
\ A
RESPOND DATA
TO HOST
b 4
ED

U.S. Patent Apr.11,2023 Sheet 9 of 15 US 11,625,168 B2

CPY ACCELERATOR DRIVE
START
v B
ISSUE READ
COMMAND TO DRIVE | cowpnesats
DATA TO DRAM OF
sore ke ACCELERATOR
COMPRESSED
REQUEST e DATA T 903
ACCELERATOR
FORPORTIONOF | |
A) 4
PLAINTEXT DATA DECOVPRESS | gqs
COMPRESSED DATA
904
¥
EXTRACT PORTION | g
OF PLAINTEXT DATA
)OS \
TRANSFER
FORMREADDATA. &1 ™ pomrone = o7
DRAM OF CTL
503
S
RESPONDS
DATATO HOST
/
END

U.S. Patent Apr.11,2023 Sheet 10 of 15 US 11,625,168 B2

CRY ACCELERATOR DRIVE
1001 1002
ied foad 1003
REQUEST ISSUE READ ~
ACCELERATOR 2 INSTRUCTION
FOR PORTION OF TO DRIVE > TRANSMIT
PLAINTEXT DATA COMPRESSED
DATATO DRAM
STORE ol QF ACCELERATOR
COMPRESSED
OATA T 1004
v
DECOMPRESS
COMPRESSED "1 1005
DATA
y
EXTRACT
PORTIONOF T 1006
PLAINTEXT DATA
1008
) y
TRANSMIT
FORMREAD DATA &1 Samn oo =T 1007
DRAM OF CTL
l 1008
o
RESPOND DATA
TOHOST
W
£nd

U.S. Patent Apr.11,2023 Sheet 11 of 15 US 11,625,168 B2

FIG. 11

eeeeeeeeeeeeeeeeeeeeeeee T e
i NETWORK :

100 /\
My
STORAGE DEVICE
10 / \ 10
N
CTL-0 121 | FE FE | 121 CTL-1
o 120 N pF E 120 495
125
D CPUY 128 128 CPU b
R R
129 122 122 h 129
A M\ W *\ 4 A
M M b4 FEow FESW | MC M
A BE BE
12671 aw | 1%
11 \ [
'\.,.\
13 4
145, mkﬁ\ |] Wy s
ACCELERATOR ACCELERATOR

130 130 130 130

U.S. Patent Apr.11,2023 Sheet 12 of 15 US 11,625,168 B2

FIG. 12

M?DQ

HOST

\
<

101
NETWORK

100 /\
N
STORAGE DEVICE
140 g
. .
CTL-G 121 | FE FE 121 CTL-
15 120~ IF £ b 1200 g2
- N
~ T
D CPU 128 128 CPU D
RI. 110 lﬁ] 122 122 hm 9] R
A . ~ s -~ A
i MC L FE Sw FESW || MC M
ACCELERATOR ACCELERATOR
= e
146 A BE BE N 146
127 | sw sw | 1%

M

130

U.S. Patent Apr.11,2023 Sheet 13 of 15 US 11,625,168 B2

A "
T FE
VE 125 CT
<\ CPU N DRAM 304A
121 = a0
' Coowen | 2F
129 gy}
AN COMP B <
2 | COMP C
FE |1 ve Ko
it 3040
120
N
4
1 | DaTAX b
A
146 " ‘
S| ACCELERATOR / \\
3034
oy o ; osid |
3044 ~T1 COMPA > ‘/ PLANA E | 0
3048 TL__cowps_ F—>{" JPLANE P | Fose
304c A_cowPC S[ranc |1
25 M1
N
130
/’ﬁ ﬁ"\\ n
cowen o 08| COMPC
COMP B ~
3040

N DRIVE I

U.S. Patent Apr.11,2023 Sheet 14 of 15 US 11,625,168 B2

1400
1401 1402 1403 1404 ws S
. . — — e
CO&@?@&E EMBODIMENT 1] EMBODIMENT 3
§ | COMPONENT | TRANSFER ’
DIRECTION 51 KB 61 1B 54 kB
COMPRESSION | COMPRESSION | COMPRESSION
1| oDRIvE 130 ouT 20430426 | 20430426 20430426
A | FESW 122 TODRAM | — 20+30+26
B N 20+30+26
DRAM 125
C ouT 20430426
D | FESW 12 FROM DRAM | — 20+30+26
2 N 20+30:26 20+30+26
DRAM 220
3 ouT 20+30+26 20+30+26
4 N 20+30+26 20+30426
FPGA210
5 ouT 84464464 64+64+64
8 N 84+64+64 64464464
DRAM 220
7 ouT 8+8+8 8:8+8
8 | FESW122 TODRAM | 2030426 | 8+8+8 8:8+8
9 N 20430426 | ~ -
DRAM 125
10 ouT 20430426 | -
1| FESWi2 FROMORAM | 20+30+26 |
17 | COMPRESSION | N 20+30+26
DECOMPRESSION
13 | ENGINE 127 ouT 6464460 | -
14 | FESW 122 TODRAM | 64+64464 | — -~
15 IN B4 +54+64 8+8+& 8+8+8
16 ouT 84843
DRAM 125
17 N | 848+8
18 ouT 8+8+8 B+8+8 8+8+8
19 | FESW 122 FROM DRAM | 8+8+8 84848 8:8+8
DRAM 220 INOUT 368 268
SUM | DRAM 125 INOUT 416 48 200
FE SW 122 TOFROM | 368 48 200

U.S. Patent Apr.11,2023 Sheet 15 of 15 US 11,625,168 B2
CRU ACCELERATOR DRIVE
CSTART
1501
e 1502
ISSUE READ
INSTRUCTION
TO DRIVE 1 TRANSMIT
COMPRESSED
DATA TO DRAM
STORE e OF CTL
OMPRESSED
- DATA?O] 1503
Y
REQUEST kb~ iz
ACCELERATOR 1904
FOR PORTION OF S
COMPRESSED |~ 1505
DATA
W
EXTRACT
PORTION OF
PLAINTEXT DATA 1~ 1506
1508
. '
TRANSMIT
P EXTRACTED e
FORM READ DATA [€ porRTIONTO | 1807
DRAM OF CTL
1509
y
RESPOND
DATA TO HOST

US 11,625,168 B2

1
STORAGE DEVICE ACCELERATOR
PROVIDING AGGREGATION OF DIVIDED
PLAINTEXT DATA READ

CLAIM OF PRIORITY

The present application claims priority from Japanese
patent applications JP 2020-066145 filed on Apr. 1, 2020,
and JP 2020-139199 filed on Aug. 20, 2020, the content of
which are hereby incorporated by reference into this appli-
cation.

BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to a storage device and
specifically to a storage device that reduces an amount of
stored data by lossless compression.

2. Description of Related Art

Data storage is a basic function of a computer system. In
many computer systems, in case of dealing with a large
amount of data, the data is stored in a storage device. The
storage device stores data in an internal storage medium
(storage drive) such as a hard disk drive (HDD) or a solid
state drive (SSD) and performs a process of writing or
reading the data according to an instruction from the outside.
The data storage cost is calculated as the product of a bit cost
of the storage medium (storage medium price/storage
medium capacity) and an amount of recorded data in a
simple definition (without considering a running cost and the
like).

In recent years, for the purpose of reducing data storage
costs, a technique for reducing the amount of physical data
stored in a storage medium by a lossless compression
algorithm is widely used. In a storage device having a data
amount reduction function, a compression process is per-
formed before data is written to a medium, and a decom-
pression process is performed after the data is read from the
medium. However, since the compression and decompres-
sion of the data are processes that require heavy loads, if the
processes are executed by a central processing unit (CPU) in
the storage device, the performance of writing and reading
data according to an instruction from the outside deterio-
rates.

For example, US-A-2017/0147624 discloses a device that
includes a CPU bus equipped with an accelerator that can
perform data compression and decompression at high speed
with dedicated hardware, and off-loads the compression and
decompression of the data stored in the memory and data
input and output on the bus, to reduce the CPU load.

On the other hand, in a storage device having a data
amount reduction function, in order to further reduce the
data storage cost, it is necessary to realize a high data
reduction rate by lossless compression. One of the methods
thereof is to compress data in large units.

For example, when there are eight items of 8 kB data,
compared with a case where each is individually com-
pressed, in case where one item of 64 kB data configured by
arranging eight items of data is compressed, the data reduc-
tion rate is higher. This is because the lossless compression
algorithm used in the storage device is generally a slide
dictionary method, and the larger the compression unit, the
wider the dictionary search space, so the probability for
finding a matching character string becomes higher.

15

20

25

40

45

60

65

2

There is a disadvantage in increasing the data compres-
sion unit. It is assumed that one item of 8 kB data is to be
read from eight items of 8 kB data (64 kB data in total) that
are compressed to 20 kB, according to an instruction from
the outside. The storage device is required to read 20 kB data
from the storage medium from the memory, decompress the
data, load the 64 kB data to the memory, extract the 8 kB
data, and output the data to the outside.

If a storage device having a data amount reduction
function is configured by using an accelerator connection
aspect as in US-A-2017/0147624, when the compression
unit of the data is increased to 64 kB or the like, an amount
of data to be read and written from the memory becomes
extremely larger than the amount of data to be output to the
outside.

Comparing the memory bandwidth of the CPU and the
transfer bandwidth of the storage medium, both are increas-
ing in speed year by year owing to advances in transmission
technology. The data read performance of the storage device
is also improved accordingly. However, the growth rate of
the memory bandwidth of the CPU tends to be slower than
the transfer bandwidth of the storage medium. That is, if the
data compression unit is increased, the memory bandwidth
of the CPU may become a bottleneck in reading the data of
the storage device, to hinder performance improvement.

The storage device of one aspect of the present invention
includes a first memory, a process device that stores data in
the first memory and reads the data from the first memory,
and an accelerator that includes a second memory different
from the first memory. The accelerator stores compressed
data stored in one or more storage drives storing data, in the
second memory, decompresses the compressed data stored
in the second memory to generate plaintext data, extracts
data designated in the process device from the plaintext data,
and transmits the extracted designated data to the first
memory.

SUMMARY OF THE INVENTION

According to an aspect of the present invention, the
performance of the storage device that reduces an amount of
stored data by lossless compression can be improved.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a configuration of a system of a first
embodiment;

FIG. 2 illustrates an internal configuration of a compres-
sion decompression accelerator of the first embodiment;

FIG. 3A illustrates an expansion effect of a data compres-
sion unit of the first embodiment;

FIG. 3B illustrates structures of plaintext data and com-
pressed data according to the first embodiment;

FIG. 4 illustrates an extraction example of read data of the
first embodiment;

FIG. 5 illustrates an outline of a data reading procedure of
a comparative example;

FIG. 6 illustrates an outline of the data reading procedure
of the first embodiment;

FIG. 7 illustrates transmission amount comparison with
the related art according to an example of the data reading
of the first embodiment;

FIG. 8 illustrates a flowchart of a data reading procedure
of a comparative example;

FIG. 9 illustrates a first flowchart of the data reading
procedure of the first embodiment;

US 11,625,168 B2

3

FIG. 10 illustrates a second flowchart of the data reading
procedure of the first embodiment;

FIG. 11 illustrates a configuration of a system of the
second embodiment;

FIG. 12 illustrates a configuration of a system of a third
embodiment;

FIG. 13 illustrates an outline of a data reading procedure
of the third embodiment;

FIG. 14 illustrates a flowchart of the data reading proce-
dure of the third embodiment; and

FIG. 15 illustrates transmission amount comparison with
the first embodiment in an example of the data reading of the
third embodiment.

DESCRIPTION OF EMBODIMENTS

Hereinafter, embodiments of the present invention are
specifically described with reference to the drawings. In the
following description, the same configuration is denoted by
the same reference numerals in principle, and repeated
descriptions are omitted. It should be noted that the embodi-
ments described below are merely examples for embodying
the present invention and do not limit the technical scope of
the present invention.

First Embodiment

(1) System Configuration

With reference to FIG. 1, a storage device 100 having a
data amount reduction function using lossless compression
according to a first embodiment and a system configuration
including the storage device are described. A plurality of
hosts 102 are connected to the storage device 100 via a
network 101. The hosts 102 each perform various requests
such as a read request or a write request (I/O request) on the
storage device 100 via the network 101 for managing data.

The storage device 100 has a data amount reduction
function by using lossless compression. The storage device
100 is equipped with two storage controllers (CTL) 110
having the same function for high reliability and equipped
with a drive box 111 including a plurality of storage drives
130 (simply referred to as drives 130) as storage media
storing data. The drive box 111 includes the drives 130 and
a housing that accommodates the drives 130. In the present
embodiment, an example in which two storage controllers
110 are provided is described, but the present embodiment
is not limited to this number of the controllers. For example,
the storage device may be equipped with three or more
storage controllers 110.

The drives 130 are a non-volatile storage medium such as
a hard disk drive (HDD) or a solid state drive (SSD).
According to the present embodiment, the drive 130 is not
limited to the HDD or the SSD.

The storage controller 110 is equipped with components
inside thereof, such as a processor (PR) 128 that performs
various kinds of control of the storage device, a memory
controller (MC) 129, a front end (FE) switch 122, a dynamic
random access memory (DRAM) 125, a front-end interface
121 (hereinafter, referred to as an FE_I/F 121), a back-end
adapter 124 (hereinafter, referred to as a BE_ADP 124).

The CPU 120 is a semiconductor chip that includes the
processor 128, the memory controller 129, and the FE
switch 122. The BE_ADP 124 includes the BE switch 126
and an accelerator 123 connected thereto.

Each component except for the DRAM 125 is connected
to each other via the FE switch 122. The standard for this
interconnection interface is, for example, PCI-Express.

10

20

25

40

45

60

65

4

According to the present embodiment, the connection inter-
face in the storage controller 110 is not limited to PCI-
Express.

The DRAM 125 is a first memory and is connected to the
memory controller 129 of the CPU 120. The CPU 120 that
is a process device connected to the DRAM 125 stores data
in the DRAM 125 and reads data from the DRAM 125. The
standard that this connection interface follows is, for
example, Double Data Rate 4 (DDR4). According to the
present embodiment, the standard of the connection inter-
face of the DRAM 125 is not limited to DDR4.

The DRAM 125 is a volatile storage medium, and pro-
vides a temporary storage area that functions as a cache or
a buffer of the data in the storage device 100. Both of the
volatile storage medium and the non-volatile storage
medium are computer-readable non-transient storage media.

The FE_I/F 121 is an interface for connection with a
plurality of hosts that sends various requests to the storage
devices, and a protocol such as Fibre Channel (FC) or
Ethernet can be used. According to the present embodiment,
a protocol used by the FE_I/F 121 is not limited to FC or
Ethernet.

The BE_ADP 124 is an interface for connection to the
drive box 111 including the plurality of drives 130 mounted
on the storage device 100. The BE_ADP 124 is an interface
for writing data to the drive box 111 and reading data from
the drive box 111. The BE_ADP 124 uses a protocol such as
Serial Attached SCSI (SAS), Serial ATA (SATA), and NVM
Express (NVMe). According to the present embodiment, the
protocol used by the BE_ADP 124 is not limited to SAS,
SATA, and NVMe.

The accelerator 123 is a characteristic component of the
present embodiment, and is hardware that compresses and
decompresses data at high speed with the storage controller
110. The accelerator 123 is hardware that executes com-
pression and decompression processes at high speed instead
of the CPU 120 of the storage controller 110. According to
the present embodiment, an example in which one storage
controller 110 is equipped with one accelerator 123 is
described, but the present embodiment is not limited to this
number of components. For example, one storage controller
110 may be equipped with two accelerators 123. Details of
the accelerators 123 are provided with reference to FIG. 2.

The CPU 120 or the drive 130 is connected to the
accelerator 123 via the BE switch 126, transmits data, and
receives control information.

The storage device 100 collects the plurality of drives 130
and manages the drives as one storage area, to provide an
area for storing data to the hosts 102. At this point, data is
secured by performing redundancy using the Redundant
Arrays of Inexpensive Disks (RAID) technology so that data
is not lost due to a partial failure of the drive 130.

The drive box 111 includes two drive box switches
(hereinafter, referred to as DB_SWs 131) for establishing for
data transmission paths respectively to the plurality of drives
130 from the two storage controllers 110. The DB_SWs 131
bundle the data transmission paths between the plurality of
drives 130 and the CPUs 120. The drives 130 each have the
transmission paths from the two DB_SWs 131, respectively,
so that data can be continuously read and written even if any
one of the two storage controllers 110 breaks down. Accord-
ing to the present embodiment, the number of DB_SWs 131
is not limited to two.

(2) Accelerator Configuration

With reference to FIG. 2, the internal configuration of the
accelerator 123 is described. The accelerator 123 includes a

US 11,625,168 B2

5

field programmable gate array (FPGA) 210 which is a data
process circuit and a DRAM 220 inside thereof.

The DRAM 220 is a volatile storage medium in the same
manner as the DRAM 125, but is a second memory that is
not connected to the CPU 120, differently from the DRAM
125. The DRAM 220 is in the accelerator 123 and provides
a temporary storage area of compressed data or plaintext
data. The present embodiment is not limited to a configu-
ration in which the DRAM 220 and the DRAM 125 are the
same volatile storage medium.

The FPGA 210 is a device on which an arbitrary logic
circuit can be hardware-installed in a programmable manner.
The FPGA 210 includes a compression process circuit 216,
a decompression process circuit 217, a data integrity process
circuit 218, an I/O interface 211, a DRAM interface 212, a
control circuit 214, and a direct memory access controller
(DMAC) circuit 215, inside thereof.

According to the present embodiment, instead of the
FPGA 210, an application specific integrated circuit (ASIC)
in which a logic circuit is fixedly hardware-installed may be
provided. The FPGA (or ASIC) 210 may be configured with
one semiconductor chip or may be configured with the
plurality of semiconductor chips connected to each other.
Further, logic circuits to be installed on each semiconductor
chip are arbitrarily selected.

The DMAC 215 is connected to the compression process
circuit 216, the decompression process circuit 217, the data
integrity process circuit 218, the I/O interface 211, the
DRAM interface 212, and the control circuit 214 in the
FPGA 210. The DMAC 215 transmits the data between the
components by addresses or identifiers (ID). In FIG. 2, an
aspect in which components are connected in a star shape is
described, but in the present embodiment, the connection is
not limited to this.

The compression process circuit 216 is a logic circuit that
compresses plaintext data by a lossless compression algo-
rithm and generates compressed data. The compression
process circuit 216 can process the compression at higher
speed than the processor 128 of the CPU 120.

The decompression process circuit 217 is a logic circuit
that decompresses the compressed data by the lossless
compression algorithm and generates plaintext data. The
decompression process circuit 217 can process the decom-
pression at higher speed than the processor 128 of the CPU
120.

The data integrity process circuit 218 is a logic circuit that
generates a cyclic redundant code (CRC) included in the
guarantee code in the compressed plaintext data, verifies the
CRC included in the guarantee code in the decompressed
plaintext data, and confirms that the data is not corrupted.

The 1/O interface 211 is a logic circuit that is connected
to the outside. The 1/O interface 211 transmits and receives
the data or the control information with the outside. The I/O
interface 211 receives plaintext data and transmits the com-
pressed data during the compression process. The /O inter-
face 211 receives the compressed data and transmits the
plaintext data during the decompression process.

The control circuit 214 is connected to the 1/O interface
211 and receives a process request from the CPU 120 to the
accelerator 123 via the I/O interface 211. The control circuit
214 controls the DMAC 215, transmits the data between the
components in the accelerator 123, and transmits the data via
the I/O interface 211.

If a read request is received from the CPU 120, the control
circuit 214 issues a read instruction to the drive 130 accord-
ing to a request parameter (this operation is not performed
in the flow of FIG. 9 but performed in the flow of FIG. 10).

10

15

20

25

30

35

40

45

50

55

60

65

6

For example, the request parameter indicates an address of
target data to be read from the drive 130, an internal address
of a portion to be extracted from the target data, and a
transmission destination of the extracted portion.

The DMAC 215 stores the target data received from the
drive 130 to the DRAM 220. The control circuit 214
instructs the compression process circuit 216, the decom-
pression process circuit 217, and the data integrity process
circuit 218 to respectively perform the compression process,
the decompression process, and the guarantee code process
with respect to the target data, and to transmit the process
results to the DRAM 220.

Also, the control circuit 214 extracts a portion of the
process result data in the DRAM 220 according to the
request parameter received from the CPU 120, and transmits
the extracted portion to the DRAM 125 via the [/O interface
211. The control circuit 214 monitors the other components
of the FPGA 210 for failure according to periodic informa-
tion monitoring and an interruption process.

The DRAM interface 212 is an interface for the FPGA
210 reading and writing the data of the DRAM 220. The
standard followed by the interface is, for example, DDR4.
According to the present embodiment, the standard of the
connection interface of the DRAM 220 is not limited to
DDR4.

The number of channels of the DRAM interface 212 is
designed to calculate internal transmission throughput
requirements of the compressed data or the plaintext data
based on the read and write performance specification of the
storage device 100 and to have a sufficient bandwidth
according to this. That 1s, according to the transmission of
the compressed data or the plaintext data, the number of
channels is designed so that the bandwidth of the DRAM
interface 212 does not become a bottleneck. As the through-
put requirement is higher, the number of channels becomes
larger. The FPGA 210 is programmable, and thus has a high
degree of freedom in design, compared with a case where
the maximum number of channels between the CPU 120 and
the DRAM 125 is fixed by the specification of the CPU 120.

(3) Compression Unit and Data Structure

With reference to FIGS. 3A and 3B, an effect of expand-
ing a compression unit and structures of the plaintext data
and the compressed data are described. In FIG. 3A, 8 kB
plaintext data 301 is a minimum unit of the data transmitted
by the storage device 100 between the hosts 102 and the
storage device 100 by the read/write request from the
outside. If the 8 kB plaintext data is individually com-
pressed, for example, 46% of the data amount is reduced
from the 8 kB plaintext data 301 in average.

Meanwhile, 64 kB data 303 is data configured by con-
necting eight items of the 8 kB data 301. If the 64 kB data
303 is compressed, for example, 60% of the data amount is
reduced from the 64 kB plaintext data 303 in average. In this
mannet, if the compression unit is increased, the compres-
sion rate is improved. The storage device 100 of the present
embodiment causes the compression unit to 64 kB larger
than 8 kB in the related art to increase the data reduction rate
so that the data storage cost can be reduced.

FIG. 3B illustrates a data structure of the plaintext data
301 and compressed data 302 (304). The plaintext data 301
includes a payload 311 which is net data stored by the host
102 in the storage device 100 and a guarantee code 312
corresponding thereto. The guarantee code 312 includes a
storage destination address and the CRC of the payload 311.
The storage controller 110 inspects whether there is an error
in the storage destination address or whether the data content
is corrupted according to the guarantee code 312. The

US 11,625,168 B2

7

storage destination address is an address for identifying a
position in the address space where the host 102 reads and
writes the data, and is not an address of the drive 130.

The compressed data 302 (304) includes a result obtained
by compressing the plaintext data 301 (or a result obtained
by compressing the plaintext data 303 in which eight items
of the plaintext data 301 are arranged)322, header informa-
tion 321, and a guarantee code 323. The header information
321 includes the size of a compression result 322. The
guarantee code 323 includes the storage destination address
or the CRC of the compression result 322. The storage
controller 110 inspects whether there is an error in the
storage destination address or whether the data content is
corrupted, according to the guarantee code 323. The storage
destination address is an address used by the storage con-
troller 110 for identifying the position in the address space
configured with the plurality of drives 130.

The data integrity process circuit 218 in the accelerator
123 generates and inspects the CRC in the guarantee code
312 or 323 when the compression and decompression pro-
cesses are performed.

(4) Extraction of Read Data

With reference to FIG. 4, a method in which the storage
controller 110 configures the read request data from the host
102 is described.

It is likely that the host 102 writes the 8 kB plaintext data
301 to the storage device 100 in a random address order. In
this case, the storage controller 110 configures the 64 kB
plaintext data 303 whenever eight items of the 8 kB plaintext
data 301 are stored in the DRAM 125 in a writing order.

FIG. 4 illustrates an example in which 24 items of the 8
kB plaintext data 301 are written in a random address order,
and each of three items of the 64 kB plaintext data 3034,
303B, and 303C is configured with a set of eight items of the
8 kB plaintext data 301. One item of 8 kB plaintext data in
each set including eight items of the 8 kB plaintext data 301
is indicated by reference numeral 301, as an example. A
number in a square rectangle indicating the 8 kB plaintext
data 301 is an address for identifying a position in the
address space where the host 102 reads and writes data. The
storage controller 110 individually compresses three items
of 64 kB plaintext data and stores the compressed data in the
drive 130.

Thereafter, it is likely that the host 102 reads the 8 kB
plaintext data 301 from the storage device 100 in a sequen-
tial address order. FIG. 4 illustrates an example in which the
host 102 reads sequential 24 kB plaintext data 401 that
includes three items of the 8 kB plaintext data 301 and in
which addresses are in order of 005, 006, and 007.

In the example of FIG. 4, the storage controller 110 reads
three items of the 64 kB compressed data 304 obtained by
respectively compressing the three items of the 64 kB
plaintext data 303A, 303B, and 303C, from the drive 130.
The storage controller 110 decompresses each of the three
items of the 64 kB compressed data 304 and restores the
three items of the 64 kB plaintext data 303A, 303B, and
303C. The storage controller 110 extracts three items of the
8 kB plaintext data 301 of which the addresses are 005, 006,
and 007 from the plaintext data, and configures the read data
401 requested by the host 102.

If the compression unit is 8 kB, the storage controller 110
reads the data obtained by compressing the three items of the
8 kB plaintext data 302 from the drive 130 and decom-
presses the data, respectively. The storage controller 110
configures the read data 401 requested by the host 102 with
the three items of the 8 kB plaintext data 301.

10

15

20

25

30

35

40

45

50

55

60

65

8

That is, if the compression unit is expanded, as described
above, when the host 102 accesses the drives 130 for writing
the data in a random address order and then sequentially
reading the data, it is required that the storage controller 110
reads and decompresses a lot of data from the drive 130.
Accordingly, the bandwidth consumption of the data trans-
mission path in the storage controller 110 increases, and thus
it is likely that the transmission bandwidth becomes a
bottleneck, to deteriorate the performance of the storage
device 100.

(5) Data Reading Procedure

With respect to FIGS. 5 and 6, data reading procedures
according to a comparative example and the present embodi-
ment are described. FIG. 5 illustrates a data reading proce-
dure when the compression unit is expanded in a storage
device of the comparative example. Compared with the
storage device 100 of the present embodiment illustrated in
FIG. 1, a compression decompression engine 127 connected
to the FE switch 122 is added. In addition, differently from
the BE_ADPs 124 illustrated in FIG. 1, a BE_ADP 141 does
not include an accelerator. In the same manner as the
accelerators 123 illustrated in FIG. 1, the compression
decompression engine 127 is hardware that executes com-
pression and decompression of the data at high speed. The
compression decompression engine 127 receives an input of
the data from the DRAM 125 according to the process
instruction of the processor 128, compresses or decom-
presses the data, and outputs the data to the DRAM 125.

In FIG. 5, the CPU 120 reads three items of 64 kB
compressed data (Comp_A (304A), Comp_B (304B), and
Comp_C (304C)) from the drive 130 to the DRAM 125 via
the BE_ADP 141, the FE_SWs 122, and the memory
controllers 129. Subsequently, the CPU 120 transmits three
items of the 64 kB compressed data 304A, 304B, and 304C
from the DRAM 125 1o the compression decompression
engine 127 via the memory controller 129 and the FE_SW
122 and instructs decompression thereof.

The compression decompression engine 127 decom-
presses three items of the 64 kB compressed data 304A,
304B, and 304C and generates three items of the 64 kB
plaintext data (Plain_A (303A), Plain_B (303B), and
Plain_C (303C)). The compression decompression engine
127 transmits three items of the 64 kB plaintext data 303A,
303B, and 303C to the DRAM 125 via the FE_SW 122 and
the memory controller 129.

The CPU 120 extracts three items of 8 kB plaintext data
from these, configures the read data (Data_X (401))
requested by the host 102, and stores the read data in the
DRAM 125. The CPU 120 responds to the host 102 with
read data 181 via the memory controller 129, the FE_SW
122, and the FE_I/F 121.

FIG. 6 illustrates a data reading procedure when the
compression unit is expanded according to the present
embodiment. The CPU 120 reads three items of 64 kB
compressed data (Comp_A (304A), Comp_B (304B), and
Comp_C (304C)) from the drive 130 to the DRAM 220 in
the accelerator 123 via the BE SW 126 of the BE_ADP 124.
In this manner, the compressed data 304A, 304B, and 304C
stored in the drive 130 are transmitted to the DRAM 220
without the DRAM 125.

Subsequently, the accelerator 123 decompresses three
items of the 64 kB compressed data 304A, 304B, and 304C
and stores three items of the 64 kB plaintext data (Plain_A
(303A), Plain_B (303B), and Plain_C (303C)) to the DRAM
220. The accelerator 123 extracts three designated items of
the 8 kB plaintext data from three items of the 64 kB
plaintext data 303A, 303B, and 303C and transmits the

US 11,625,168 B2

9

extracted data to the DRAM 125 via the FE_SW122 and the
memory controller 129. The CPU 120 configures the read
data (Data_X (401)) requested by the host 102 from three
items of the 8 kB plaintext data and responds to the host 102
via the FE_SW 122 and the FE_I/F 121.

(6) Compoarison of Transmission Amount in Data Reading

With reference to FIG. 7, in the data reading according to
the comparative example and the present embodiment,
amounts of the data transmitted in the storage device 100 are
compared. Table 700 of FIG. 7 shows an example of
transmission directions and data amounts (unit of kB) of the
data passing through each component inside the storage
device 100, when the storage device 100 responds with the
three items of 8 kB plaintext data illustrated in FIG. 4
according to the read request of the host 102.

A column 701 shows component names, and a column
702 shows transmission directions (input, output, transmis-
sion sources, or transmission destinations). A column 703
shows transmission data amounts when the compression
unit is 8 kB with respect to the data reading of the com-
parative example illustrated in FIG. 5. A column 704 shows
a transmission data amount when the compression unit
expands to 64 kB with respect to the data reading of the
comparative example. A column 705 shows a transmission
data amount when the compression unit expands to 64 kB
with respect to the data reading of the present embodiment.
In Table 700, the data amount of a portion of cells is shown
as the sum of three values, and each value shows the data
size of the data (compressed or plaintext data) of the
compression unit.

In this example, it is assumed that the 8 kB plaintext data
301 with the addresses 005, 006, and 007 is compressed by
46% 1in average by the compression, to be 4 kB, 5 kB, and
4kB. It is assumed that the 64 kB plaintext data 303A, 303B,
and 303C respectively including 8 kB data with the
addresses 005, 006, and 007 are compressed by 60% in
average by compression to be 20 kB, 30 kB, and 26 kB,
respectively.

A flow of the data of the comparative example shown by
the column 703 is described. The three items of 8 kB
compressed data are stored from the drive 130 in the DRAM
125 via the BE_ADP 141, the FE_SW 122, and the memory
controller 129 (rows “17, “8”, and “9”). The three items of
8 kB compressed data are transmitted from the DRAM 125
to the compression decompression engine 127 via the
memory controller 129 and the FE_SW 122 (rows “107,
“117, and “127).

The three decompressed items of 8 kB plaintext data are
transmitted from the compression decompression engine
127 to the DRAM 125 via the FE_SW 122 and the memory
controller 129 (rows “13”, “14”, and “157). If the read data
formed from the three items of 8 kB plaintext data is
transmitted from the DRAM 125 to the host 102 via the
memory controller 129, the FE_SW 122, and the FE_I/F 121
(rows “18” and “19”).

Subsequently, a flow of the data of the comparative
example shown by the column 704 is described. The three
items of 64 kB compressed data are stored from the drive
130 in the DRAM 125 via the BE_ADP 141, the FE_SW
122, and the memory controller 129 (rows “17, “8”, and
“9”). The three items of 64 kB compressed data are trans-
mitted from the DRAM 125 to the compression decompres-
sion engine 127 via the memory controller 129 and the
FE_SW 122 (rows “10”, “117, and “127).

The three decompressed items of 64 kB plaintext data are
transmitted from the compression decompression engine
127 to the DRAM 125 via the FE_SW 122 and the memory

15

20

25

30

40

45

55

60

65

10

controller 129 (rows “13”, “14”, and “15”). Three items of
4 kB plaintext data are extracted from the three items of 64
kB plaintext data, and read data is configured (rows “16” and
“17”). The formed read data is transmitted from the DRAM
125 to the host 102 via the memory controller 129, the
FE_SW 122, and the FE_I/F 121 (rows “18” and “19”).

Subsequently, a flow of the data of the present embodi-
ment shown by the column 705 is described. The three items
of 64 kB compressed data are transmitted to the DRAM 220
in the accelerator 123 via the BE_SW 126 of the BE_ADP
124 (rows “1” and “2”). The three items of 64 kB com-
pressed data are transmitted from the DRAM 220 to the
FPGA 210 in the accelerator 123 (rows “3” and “4”).

Subsequently, the three decompressed items of 64 kB
plaintext data are transmitted from the FPGA 210 to the
DRAM 220 in the accelerator 123 (rows “5” and “6”). The
three items of 8 kB plaintext data extracted from the three
items of 64 kB plaintext data are transmitted from the
DRAM 220 to the DRAM 125 via the FE_SW 122 and the
memory controller 129 (rows “77, “8”, and “15”). The read
data is configured from the three items of 8 kB plaintext data
transmitted from the DRAM 125 to the CPU 120 (row “18”)
and transmitted to the host 102 via the FE_SW 122 and the
FE_I/F 121 (row “197).

The sum of the data amounts that are input and output to
the DRAM 220 in the accelerator 123 is shown on the third
row from the bottom of Table 700. The sum of the data
amounts that are input and output to the DRAM 125 is
shown on the second row from the bottom. In the compara-
tive example, if the compression unit is expanded, as illus-
trated in the column 704, the data amount that is input and
output to the DRAM 125 extremely increases from 48 kB to
416 kB.

As illustrated in the column 705, according to the present
embodiment, even if the compression unit is expanded, the
data amount that is input and output to the DRAM 125 is 48
kB, as it is. However, the data amount that is input and
output to the DRAM 220 is 368 kB. Since 48+368=416, also
in the procedure of the present embodiment, the sum of the
data amounts that are input and output to the DRAM is the
same as that in the procedure in the related art, but the
increase of the data amount that is input and output to the
DRAM 125 connected to the CPU 120 can be suppressed.

For example, it is assumed that, in order to respond with
the three items of the 8 kB plaintext data 301 for the period
of time requested by the host 102, the data amount is
required to be 200 kB or lower with the number of channels
of the memory controller 129 included in the CPU 120. The
increase of the input and output data amount to 416 kB due
to the expansion of the compression unit means that the
DRAM transmission becomes a bottleneck, and the read
performance of the storage device 100 is deteriorated.

Meanwhile, according to the present embodiment, as
described with reference to FIG. 2, the accelerator 123
includes an interface for causing the FPGA 210 to read and
write data from and to the DRAM 220, and thus the number
of channels can be designed in a programmable manner. For
example, if the DRAM interface 212 of the FPGA 210 in the
accelerator 123 is logic-designed so that the memory con-
troller 129 included in the CPU 120 includes channels by
two times of the number of channels, the performance is not
deteriorated to the data amount of 400 kB.

Therefore, even if the input and output data amount of the
DRAM 220 by the expansion of the compression unit
becomes 368 kB, the DRAM transmission does not become
a bottleneck, and the read performance of the storage device
100 is not deteriorated. Also in the case where hardware

US 11,625,168 B2

11

different from the FPGA, for example, the ASIC is used, the
number of channels with the DRAM 220 can be designed
independently from the CPU 120, and thus the same effect
can be achieved.

The first row from the bottom of Table 700 shows the sum
of the data amounts input and output to the DRAM 125 via
the FE_SW 122. The compression of 8 kB unit of the
comparative example is 74 kB, and the data amount
increases to 368 kB with the compression of 64 kB unit. The
data amount of the present embodiment is 48 kB, and the
increase of the data amount due to the increase of the
compression unit can be reduced than in the comparative
example.

Since this can suppress the bandwidth consumption of the
FE_SW122 in the CPU 120, a risk that the transmission
bandwidth of the FE_SW 122 becomes a bottleneck of the
read performance of the storage device 100 can be also be
reduced. In the above example, the read data is configured
from the plaintext data obtained by decompressing three
items of compressed data, but the number of the read
compressed data depends on the read request from the host
102. As described above, if the plurality of items of the
compressed data is decompressed respectively, and the read
data is formed by extracting a portion of data, the present
embodiment can achieve a greater effect than the compara-
tive example.

(7) Flowchart of Data Reading Procedure

With reference to FIGS. 8, 9, and 10, flowcharts of the
data reading procedure of the comparative example and the
present embodiment are illustrated. FIG. 8 is a flowchart of
the data reading procedure of the comparative example. The
processes performed by the CPUs 120, the compression
decompression engine 127, and the drive 130 are divided
into three columns.

First, the CPU 120 issues a read instruction of the
compressed data to the drive 130 (801). The drive 130
transmits the compressed data read according to the read
instruction to the DRAM 125 connected to the CPU 120 (in
FIG. 8, DRAM of CTL) (802). The CPU 120 stores the
compressed data to the DRAM 125 (803).

Subsequently, the CPU 120 transmits the compressed data
1o the compression decompression engine 127 and requests
decompression thereof (804). The compression decompres-
sion engine 127 decompresses the compressed data accord-
ing to the decompression request (805). The plaintext data
which is the decompression result is transmitted to the
DRAM 125.

The CPU 120 extracts a portion of the data which is
requested to read from the host 102, from the plaintext data
(806) and forms read data by using the portion of the data
(807). Lastly, the CPU 120 responds to the host 102 with the
read data (808).

FIGS. 9 and 10 are flowcharts of the data reading proce-
dures of the present embodiment, respectively. In the both,
the processes performed by the CPU 120, the accelerator
123, and the drive 130 are divided into three columns.

Here, two kinds of examples of a method of issuing a
reading instruction from the CPU 120 are shown. FIG. 9 is
an example of instructing the drive 130 and the accelerator
123 individually. FIG. 10 is an example of instructing the
accelerator 123 collectively.

In FIG. 9, the CPU 120 first issues the read instruction of
the compressed data to the drive 130 (901). The read
instruction includes a parameter indicating a read start
address, a read size, and a data transmission destination of
the drive 130.

20

25

35

40

45

60

65

12

The drive 130 transmits the 64 kB compressed data 304A,
340B, and 304C read according to the request parameter of
Step 901 to the DRAM 220 in the designated accelerator 123
(in FIG. 9, the DRAM of the accelerator) (902). The
accelerator 123 stores the 64 kB compressed data 304 in the
DRAM 220 (903). The drive 130 notifies the CPU 120 of the
transmission completion.

Subsequently, the CPU 120 that receives the notification
of the transmission completion requests the accelerator 123
for a portion of the plaintext data (904). This request
includes the start address (second address), the size, and the
transmission destination of the portion of the data required
for the read response to the host 102 for each item of the 64
kB plaintext data 303A to 303C.

The accelerator 123 decompresses the 64 kB compressed
data 304A, 304B, and 304C according to request (905).
Also, according to the request parameter of Step 904,
portions of the data are extracted from each item of the 64
kB plaintext data 303A, 303B, and 303C which are decom-
pression results (906). The accelerator 123 transmits the
extracted portions of the data to the DRAM 125 connected
to the CPU 120 (in FIG. 9, the DRAM of CTL) (907).

The CPU 120 forms the read data 401 by using these
portions of the data (908). Lastly, the CPU 120 responds to
the host 102 with the read data 401 (909). As described
above, the CPU 120 instructs the drive 130 to transmit the
compressed data to the DRAM 220, and the accelerator 123
receives the request including the address of the data to be
extracted from the CPU 120 and extracts the designated data
from the plaintext data. In the above flow, the process of the
accelerator 123 is reduced, and the circuit configuration
thereof can be reduced.

Meanwhile, in the flow illustrated in FIG. 10, first, the
CPU 120 requests the accelerator 123 for a portion of the
plaintext data (1001). The parameter of this request includes
aread start address (first address) and a read size of the drive
130, a start address (second address) and a size of a portion
of the data required for read response to the host 102 in the
64 kB plaintext data 303 and the transmission destination of
the portion of the data.

The accelerator 123 issues the read instruction of the
compressed data to the drive 130 according to the request
parameter of Step 1001 (1002). The read instruction is the
same as the example described with reference to FIG. 9. The
drive 130 transmits the 64 kB compressed data 304A, 3048,
and 304C read according to the read instruction to the
DRAM 220 in the accelerator 123 (in FIG. 10, the DRAM
of the accelerator) (1003). The accelerator 123 stores the 64
kB compressed data 304A, 304B, and 304C in the DRAM
220 (1004).

Subsequently, the accelerator 123 decompresses the 64
kB compressed data 304A, 304B, and 304C (1005). Also,
the accelerator 123 extracts a portion of the data required for
the read response to the host 102, from the 64 kB plaintext
data 303A, 303B, and 303C which are the decompression
results according to the request parameter of Step 1001
(1006). The accelerator 123 transmits the extracted portion
to the DRAM 125 connected to the CPU 120 (in FIG. 10, the
DRAM of the CTL) (1007).

The CPU 120 forms the read data 401 by using these
portions of the data (1008). Lastly, the CPU 120 responds to
the host 102 with the read data 401 (1009). As described
above, the accelerator 123 receives the request including the
start address of the compressed data stored in the drive 130
and the start address of the data extracted from the plaintext
data, from the CPU 120. The accelerator 123 designates the
start address of the compressed data, instructs the drive 130

US 11,625,168 B2

13
to transmit the compressed data to the DRAM 220, and
extracts the data from the plaintext data according to the
designated start address. According to the above flow, the
process of the CPU 120 decreases, so that the performance
of the storage device can be increased.

Second Embodiment

With reference to FIG. 11, the storage device 100 accord-
ing to a second embodiment and a system configuration
including the storage device 100 are described. The differ-
ences from the first embodiment illustrated in FIG. 1 are
mainly described.

According to the second embodiment, accelerators 145
are not mounted in the storage controllers 110 but are
mounted in the drive box 111. In the configuration example
of FIG. 11, two accelerators 145 are mounted in one drive
box 111 for redundancy. The storage controllers 110 are
equipped with the BE SWs 126 instead of the BE_ADPs
124. Accelerators are not connected to the BE_SWs 126.

The two DB_SWSs 131 in the drive box 111 are connected
to one accelerator 145 in addition to the connection to each
drive 130. For example, even if one BE_SW 126 breaks
down, the driving can be maintained. The accelerator 145 of
the second embodiment can perform the same operation as
that of the accelerator 123 of the first embodiment.

The second embodiment is effective when the number of
the drive boxes 111 (the drives 130) increases later. In the
first embodiment, if the number of the drive boxes 111 is
small, the performances of the accelerators 123 become
excessive, and unnecessary costs may be consumed. If the
number of the drive boxes 111 increases, it is likely that the
performances of the accelerators 123 are insufficient.
According to the second embodiment, the number of the
accelerators 145 increases according to the number of the
drive boxes 111 (the drives 130), unnecessary cost is sup-
pressed, and the risk of the insufficiency of the performance
of the accelerator can be reduced.

Third Embodiment

With reference to FIG. 12, the storage device 100 accord-
ing to a third embodiment and a system configuration
including the storage device 100 are described. Differences
from the first embodiment illustrated in FIG. 1 are mainly
described.

According to the third embodiment, accelerators 146 are
connected to the FE_SWs 122, not to BE_SWs 126 in the
storage controllers 110. Differently from the accelerator 123
according to the first embodiment and the accelerator 145
according to the second embodiment, the accelerator 146
does not have a function of reading data directly from the
drive 130. However, the accelerator 146 has the same
internal configuration as that of the accelerator 123 illus-
trated in FIG. 2. The accelerators 146 may be connected to
the BE_SWs 126.

According to the third embodiment, it is not required to
perform access control to the drive 130 by the accelerator
146, and thus the third embodiment is more effective than
the first and second embodiments, in case of adding an
accelerator to the existing storage device that is not equipped
with an accelerator or in case of substituting the compres-
sion decompression engine 127 of the storage device illus-
trated in the comparative example of FIG. 5. This is because
the access control to the drive 130 can be performed with the
CPU 120 as in the related art so that functions to be installed
in the accelerators 146 can be reduced, and the accelerators

20

25

40

45

60

65

14

146 do not require direct access to the drives 130 so that
many options for mounting locations of the accelerators 146
can be obtained.

(1) Data Reading Procedure According to Third Embodi-
ment

With reference to FIG. 13, the data reading procedure
according to the third embodiment is described. FIG. 13
illustrates the data reading procedure when the compression
unit is expanded according to the third embodiment. The
CPU 120 reads the three items of 64 kB compressed data
(Comp_A (304A), Comp_B (304B), and Comp_C (304C))
from the drive 130 to the DRAM 125 via the BE_ADP 141,
the FE_SW 122, and the memory controller 129. Subse-
quently, the CPU 120 transmits the three items of the 64 kB
compressed data 304A, 304B, and 304C from the DRAM
125 to the accelerator 146 via the memory controllers 129
and the FE_SWs 122 and instructs the decompression of
these. In this manner, the compressed data 304A, 304B, and
304C stored in the drive 130 are transmitted to the DRAM
220 via the DRAM 125.

Subsequently, the accelerator 146 decompresses the three
items of the 64 kB compressed data 304A, 304B, and 304C
and stores three items of the 64 kB plaintext data Plain_A
(303A), Plain_B (303B), and Plain_C (303C) in the DRAM
220. The accelerator 146 extracts three designated items of
8 kB plaintext data from the three items of the 64 kB
plaintext data 303A, 303B, and 303C and transmits the data
to the DRAM 125 via the FE_SW 122 and the memory
controller 129. The CPU 120 configures the read data
Data_X (401) requested by the host 102 from the three items
of the 8 kB plaintext data and responds to the host 102 via
the FE_SW 122 and the FE_I’F 121.

(2) Comparison of Transmission Amounts in Data Read-
ing Including Third Embodiment

With reference to FIG. 14, in the data reading according
to the third embodiment, the amounts of the data transmitted
through the storage device 100 are compared. Table 1400 of
FIG. 14 shows an example of transmission directions and the
data amounts (unit of kB) of the data passing through each
component inside the storage device 100 when the storage
device 100 responds with the three items of the 8 kB
plaintext data illustrated in FIG. 13 according to the read
request of the host 102.

A column 1401 shows component names, and a column
1402 shows transmission directions (input, output, transmis-
sion sources, or transmission destinations). A column 1403
corresponds to the column 704 illustrated in FIG. 7 and
shows transmission data amounts when the compression
unit is expanded to 64 kB in the data reading of the
comparative example. A column 1404 corresponds to the
column 705 illustrated in FIG. 7 and shows a transmission
data amount when the compression unit is expanded to 64
kB in the data reading according to the first embodiment. A
column 1405 shows transmission data amounts when the
compression unit is expanded to 64 kB in the data reading
according to the third embodiment. In Table 1400, the data
amount of a portion of cells is shown as the sum of three
values, and each value shows the data size of the data
(compressed or plaintext data) of the compression unit. The
trial calculation of data size illustrated in FIG. 14 is per-
formed in the same condition as in FIG. 7, and thus the
description of the duplicated contents is omitted.

With reference to FIGS. 13 and 14, the flow of the data
according to the third embodiment shown by the column
1405 is described. The three items of the 64 kB compressed
data 304A, 304B, and 304C are stored from the drives 130
to the DRAMSs 125 via the BE_ADP 141, the FE_SWs 122,

US 11,625,168 B2

15

and the memory controllers 129 (rows “17, “A”, and “B”).
The three items of the 64 kB compressed data 304A, 304B,
and 304C are transmitted from the DRAM 125 to the
accelerator 146 via the memory controller 129 and the
FE_SW 122 (rows “C”, “D”, and “2”). The three items of the
64 kB compressed data 304A, 304B, and 304C are trans-
mitted from the DRAM 220 to the FPGA 210 in the
accelerator 123 (rows “3” and “4”).

Subsequently, the three decompressed items of the 64 kB
plaintext data 303A, 303B, and 303C are transmitted from
the FPGA 210 to the DRAM 220 in the accelerator 123
(rows “5” and “6”). The three items of 8 kB plaintext data
extracted from the three items of the 64 kB plaintext data
303A, 303B, and 303C are transmitted from the DRAM 220
to the DRAM 125 via the FE_SW 122 and the memory
controller 129 (rows “77, “8”, “15”). The read data 401 is
configured with the three items of 8 kB plaintext data
transmitted from the DRAM 125 to the CPU 120 (rows
“18”), and transmitted to the host 102 via the FE_SW 122
and the FE_I/F 121 (rows “19”).

The third row from the bottom of Table 1400 shows the
sum of the data amounts that are input and output to the
DRAM 220 in the accelerator 146. The second row from the
bottom shows the sum of the data amounts that are input and
output to the DRAM 125. Compared with the first embodi-
ment shown in the column 1404 and the third embodiment
shown in the column 1405, the data amounts that are input
and output to the DRAM 220 are the same. Meanwhile, the
data amount that is input and output to the DRAM 125
according to the third embodiment is larger by 152 kB.
However, with respect to the comparative example shown in
the column 1403, the third embodiment can reduce the data
amount that is input and output to the DRAM 125 by a half
or more (from 416 kB to 200 kB).

The first row from the bottom of Table 1400 shows the
sum of the data amounts that are input and output to the
DRAM 125 via the FE_SW 122 in the CPU 120. Compared
with the first embodiment shown in the column 1404 and the
third embodiment shown in the column 1405, the input and
output data amount of the third embodiment is larger than
the input and output data amount of the first embodiment by
152 kB. However, with respect to the comparative example
illustrated in the column 1403, the third embodiment can
reduce the input and output data amount by about a half
(from 368 kB to 200 kB).

From the above, the third embodiment is less effective
than the first and second embodiments, but can reduce the
bandwidth consumption of the DRAM 125 and the FE_SW
122 in the CPU 120. Therefore, when these bandwidths
become a bottleneck of the read performance of the storage
device 100, the read performance of the storage device 100
can be enhanced by applying the third embodiment.

(3) Flowchart of Data Reading Procedure According to
Third Embodiment

FIG. 15 illustrates a flowchart of data reading procedure
according to the third embodiment. The processes per-
formed by the CPU 120, the accelerator 146, and the drive
130 are divided into three columns.

First, the CPU 120 issues a read instruction of compressed
data to the drive 130 (1501). The drive 130 transmits
compressed data read according to the read instruction to the
DRAM 125 connected to the CPU 120 (in FIG. 15, DRAM
of CTL) (1502). The CPU 120 stores the compressed data to
the DRAM 125 (1503).

Subsequently, the CPU 120 sends the compressed data to
the accelerator 146 and requests a portion of the plaintext
data (1504). This request includes a start address (second

20

25

40

45

60

65

16

address), a size, and a transmission destination of the portion
of the data required for the read response to the host 102 for
each item of the 64 kB plaintext data 303A to 303C.

The accelerator 146 decompresses the 64 kB compressed
data 304A, 304B, and 304C according to the request (1505).
According to the request parameter of Step 1504, a portion
of the data is extracted from each item of the 64 kB plaintext
data 303A, 303B, and 303C which is decompression result
(1506). The accelerator 146 transmits a portion of the
extracted data to the DRAM 125 connected to the CPU 120
(in FIG. 15, the DRAM of CTL) (1507).

The CPU 120 forms the read data 401 by using these
portions of the data (1508). Lastly, the CPU 120 responds to
the host 102 with the read data 401 (1509). As described
above, the accelerator 146 receives a request including
compressed data and a start address of the data extracted
from plaintext data from the CPU 120. The accelerator 146
reads the compressed data from the DRAM 125 of the CPU
120, decompresses the data, and extracts the data from the
plaintext data according to the designated start address.
According to the above flow, the process of the CPU 120 is
reduced, and the performance of the storage device can be
increased.

The present invention is not limited to the storage device
100 having the components illustrated in FIG. 1, 11, or 12
as the components in the storage controller 110. For
example, the present invention may be the storage device
100 equipped with an accelerator that encodes data in the
storage controller 110 or the drive box 111.

The present invention is not limited to the above embodi-
ments, and includes various modifications. For example, the
above embodiments are described in detail in order to
describe the present invention for easier understanding, and
is not limited to the one necessarily including all the
described configurations. Further, a portion of a configura-
tion of one embodiment can be replaced with a configuration
of another embodiment, and a configuration of another
embodiment can be added to a configuration of one embodi-
ment. With respect to a portion of the configuration of each
embodiment, another configuration may be added, removed,
or substituted.

Apart or all of each of the above configuration, function,
and processing units may be realized by hardware, for
example, by being designed with integrated circuits. In
addition, each of the above configurations, functions, and
the like may be realized by software by a processor inter-
preting and executing programs that realize respective func-
tions. Information such as programs, tables, and files that
realize each function can be placed in a recording device
such as a memory, a hard disk, and a solid state drive (SSD)
or a recording medium such as an IC card or an SD card.

In addition, control lines and information lines required
for the description are merely illustrated, and not all the
control lines and the information lines on the product are
necessarily illustrated. In practice, it can be considered that
almost all configurations are connected to each other.

What is claimed is:

1. A storage device comprising:

one or more storage drives that store compressed data
where a plurality of items of plaintext data are com-
pressed together; and

a controller including:

a first memory that functions as a cache for data;

a process device that responds to a host, stores data in the
first memory and reads the data from the first memory;
and

an accelerator, that is different from the process device,

US 11,625,168 B2

17

wherein, in response to a read request, the process device
transmits an instruction to the one or more storage
drives to transmit the compressed data,

wherein, in accordance with the instruction, the one or
motre storage drives transmits the compressed data,
stored in the one or more storage drives, to the con-
troller;

wherein the accelerator:

decompresses the compressed data transmitted by the one
or more storage drives to generate the plurality of items
of plaintext data;

wherein the accelerator:

extracts data designated for reading by the process device
from the plurality of items of plaintext data, wherein
the data designated from the plurality of items of
plaintext data is a subset of data from the plurality of
plaintext items; and

transmits the extracted designated data to the first memory
without transmitting data of the plurality of items of
plaintext data that is not designated for reading by the
process device to the first memory, and

wherein the process device transmits the data stored in the
first memory to a request source of the read request.

2. The storage device according to claim 1,

wherein the accelerator:

receives a request that includes an address of the desig-
nated data from the process device; and

extracts the designated data from the plaintext data
according to the address.

3. The storage device according to claim 1,

wherein the accelerator:

receives a request that includes a first address of the
compressed data stored in the one or more storage
drives and a second address of the designated data from
the process device;

designates the first address, and instructs the one or more
storage drives to transmit the compressed data to a
second memory; and

extracts the designated data from the plaintext data
according to the second address.

4. The storage device according to claim 1,

wherein the accelerator is included in an interface
between the process device and the one or more storage
drives.

5. The storage device according to claim 1,

wherein the accelerator stores compressed data transmit-
ted from the one or more storage drives via the first
memory, in a second memory.

6. The storage device according to claim 1, further com-

prising:

a drive box that includes a plurality of storage drives
including the one or more storage drives and a switch
that bundles data transmission paths between the plu-
rality of storage drives and the process device,

wherein the accelerator is connected to the switch in the
drive box.

7. The storage device according to claim 1,

wherein plaintext data designated by the process device in
one designation is divided into a plurality of items of
divided data, and the plurality of items of divided data
are compressed into a plurality of different items of
compressed data and stored in the one or more storage
drives, and

wherein the accelerator:

stores the plurality of different items of compressed data
stored in the one or more storage drives in a second
memory;

10

15

20

25

30

35

40

45

50

60

65

18

generates plaintext data from each of the plurality of
different items of compressed data; and

extracts data designated by the process device from each
item of the plaintext data, and

wherein the process device collects the extracted desig-
nated data, forms read data, and responds to a host.

8. The storage device according to claim 1, wherein the

accelerator stores the plurality of items of plaintext data in
a second memory.

9. The storage device according to claim 1,

wherein the accelerator stores the compressed data trans-
mitted from the one or more storage drives without
using the first memory, in a second memory.

10. A method that is executed by a storage device,

wherein the storage device includes:

a first memory that functions as a cache for data;

a process device that responds to a host, stores data in the
first memory and reads the data from the first memory;

an accelerator, that is different from the process device;
and

one or more storage drives that store compressed data
where a plurality of items of plaintext data are com-
pressed together, and

wherein the method comprises the steps of:

transmitting, by the process device in response to a read
request, an instruction to the one or more storage drives
to transmit the compressed data,

transmitting, by the one or more storage drives in accor-
dance with the instruction, the compressed data, stored
in the one or more storage drives, to the controller;

extracting, by the accelerator, data designated in the
process device from the plurality of items of plaintext
data;

transmitting, by the accelerator, the extracted designated
data to the first memory without transmitting unex-
tracted designated data to the first memory; and

transmitting, by the process device, the data stored in the
first memory to a request source of the read request.

11. The method according to claim 10,

wherein the accelerator:

receives a request that includes an address of the desig-
nated data from the process device; and

extracts the designated data from the plaintext data
according to the address.

12. The method according to claim 10,

wherein the accelerator:

receives a request that includes a first address of the
compressed data stored in the one or more storage
drives and a second address of the designated data from
the process device;

designates the first address, and instructs the one or more
storage drives to transmit the compressed data to a
second memory; and

extracts the designated data from the plaintext data
according to the second address.

13. The method according to claim 10,

wherein the accelerator stores compressed data transmit-
ted from the one or more storage drives via the first
memory, in a second memory.

14. The method according to claim 10,

wherein plaintext data designated by the process device in
one designation is divided into a plurality of items of
divided data, and the plurality of items of divided data
are compressed into a plurality of different items of
compressed data and stored in the one or more storage
drives, and

wherein the accelerator:

US 11,625,168 B2

19

stores the plurality of different items of compressed data
stored in the one or more storage drives in a second
memory;

generates plaintext data from each of the plurality of
different items of compressed data; and

extracts data designated by the process device from each
item of the plaintext data, and

wherein the process device collects the extracted desig-
nated data, forms read data, and responds to a host.

15. The method according to claim 10,

wherein the accelerator stores the compressed data trans-
mitted from the one or more storage drives without
using the first memory, in a second memory.

I S T

5

10

20

	Info
	Abstract
	Drawing
	Description

