a2 United States Patent

Mizushima et al.

US011119702B1

US 11,119,702 B1
Sep. 14, 2021

(10) Patent No.:
45) Date of Patent:

(54) APPARATUS FOR PROCESSING RECEIVED

DATA

(7
(72)

Applicant: Hitachi, Ltd., Tokyo (JP)

Inventors: Nagamasa Mizushima, Tokyo (IP);
Kentaro Shimada, Tokyo (JP)

(73)
")

Assignee: HITACHI, LTD., Tokyo (IP)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

21
(22)

Appl. No.: 17/189,396

Filed: Mar. 2, 2021

(30) Foreign Application Priority Data

Dec. 16,2020 (JP) .covvvriviiicicina, JP2020-208090

(51) Imt. ClL
HO3M 7/34
GO6F 3/06
GOG6F 7/523
HO3M 7/30
US. Cl.
CPC GO6F 3/0659 (2013.01); GO6F 3/0604
(2013.01); GOGF 3/0679 (2013.01); GO6F
7/523 (2013.01); HO3M 7/3084 (2013.01);
HO3M 7/6005 (2013.01)
Field of Classification Search
CPC ... GOGF 3/0659; GOGF 3/0604; GOGF 7/523;
GOGF 3/0679; HO3M 7/3084; HO3M
7/6005; HO3M 7/00
USPC i 341/50, 51
See application file for complete search history.

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)

(58)

(56) References Cited
U.S. PATENT DOCUMENTS

5,867,114 A * 2/1999 Barbir HO3M 7/4006
341/107
6,253,264 B1* 6/2001 Sebastian GO6T 9/005
341/107
7,667,630 B2* 2/2010 Harada HO4N 19/91
341/106
8,525,708 B2* 9/2013 Kushidac......... HO3M 7/00
341/107
2013/0154857 Al* 6/2013 Kushida HO3M 7/00
341/52

OTHER PUBLICATIONS

Ivan Shcherbakov et al., “A Parallel Adaptive Range Coding
Compressor: Algorithm, FPGA Prototype, Evaluation”, Data Com-
pression Conference, 2012, pp. 119-128.

* cited by examiner

Primary Examiner — Jean B Jeanglaude
(74) Attorney, Agent, or Firm — Mattingly & Malur, PC

(57) ABSTRACT

To speed up decoding of a range code. A decompression
circuit calculates a plurality of candidate bit values for each
bit of the N-bit string based on a plurality of possible bit
histories of a bit before a K-th bit in parallel for a plurality
of bits, and repeatedly selects a correct bit value of the K-th
bit from the plurality of candidate bit values based on a
correct bit history of the bit before the K-th bit to decode the
N-bit string.

15 Claims, 11 Drawing Sheets

101
HCST IIF g
103 8
g 102
STORAGE
CONTROLLER L4
108 & CACHE
MEMORY
TRANSFER
I CRCUT .
LLVIA GUVIFREQQIUN |)
AND DECOMPRESSION I md
CIRCUIT
104S f
\ﬂ [
e A St Rt === 106
] 1 N
i N
i P08
1| ssD $SD SSD R
! 1
i :
! 1
! 1
\\ ,I

US 11,119,702 B1

101

CACHE
MEMORY

U.S. Patent Sep. 14, 2021 Sheet 1 of 11
HOST IIF
163 8
g 102
STORAGE
CONTROLLER B \\
108 _/ Q—i'zl
TRANSFER
I =RAA AALMAIMRAEOOIAN] ClRCUlT N
LIVIA LUNVIFREOSOIVI |)
AND DECOMPRESSION [[~
CIRCUIT
104 7 [/ /(—
\V7 bl
I/’___ ____________________________ ___‘\\I
e A~
: . 105
| | SSD SSD SSD SSD |
: :
1 1
| 1
| 1
\\ /I

106

U.S. Patent Sep. 14, 2021 Sheet 2 of 11 US 11,119,702 B1

FIG. 2A
202 203
201 [V [V
DICTONARY |
" " compression [—*] RANGE CODING
A 4
PLAINTEXT LZMA COMPRESSED
DATA DATA
A
PLAINTEXT RANGE A
DEVELOPING DECODING [¢ 204
206 205
FIG. 2B
211 M 3

PLAINTEXT DATA: a,bcdefe, bgc, deanb,a, b;?a, b c, d,ge, f,..

l
DICTIONARY CODE WORD: a, b, ¢, d, e f e, [4,6] a b, [4.2] [4.14], ...
l
BIT STRING: 001100001, 0 01100010, 0 01100011, 0 01100100, 0 01100101

001100110, 001100101, 10 0010 001001, 0 01100001
001100010, 10 0010 00007\ 10 0010 0011101, ...

222 221 223

U.S. Patent

Sep. 14, 2021

Sheet 3 of 11

FIG. 3A

US 11,119,702 B1

300 BITHISTORY ~_, 305
N)
11110 |]
¥
N P INPUT BITSTRING .,
] 0.40 [1 }/\/
0 0.35 L
1 0.75
! v 303
00 0.25 A
1 .
0 065 ENCODER OUTPUT CODE
10 0.70
11 075
000 0.50 V>01
111 0.45
PROBABILITY TABLE = 304
310
= BITHISTORY A\ /° "
11110 }
- OUTPUT BIT STRING
X P(x) (313
040 S] }/v
0 0.35 1 |
1 0.75
00 0.25 ¥ /\\’7
ot 0.65 DECODER INPUT CODE
10 0.70
1" 0.75
000 0.50 \/;1
111 0.15
PROBABILITY TABLE = 314

U.S. Patent Sep. 14, 2021 Sheet 4 of 11 US 11,119,702 B1

FIG. 4A

0 112

2

/2

3/4

2/4

6/8 8/8
Y
///
.
1216 7 1 114116
)
“On 551»
e
L

13116 ~_~ 401
(1101)

U.S. Patent Sep. 14, 2021 Sheet 5 of 11 US 11,119,702 B1

FIG. 4B
0 114 44
T
4/16i e , / i16/16

..

28/64 | | 55064 | 64/64

4
/Z%%%%Z

I |
112/256 | 139/256 : | 220/256

“0”

U.S. Patent

Sep. 14, 2021

FIG. 5A
(START)

y

Sheet 6 of 11

US 11,119,702 B1

REFER TO PROBABILITY
FROMBIT HISTORY

YA

501

I
v

DIVIDE RANGE INTO TWO SECTIONS
IN ACCORDANCE WITH PROBABILITY

N\

502
v
SELECT ONE SECTION IN N\
ACCORDANCE WITHINPUTBIT ~ [\/
l 503
YES
INPUT ENDS?
NO 504
y
UPDATE USED PROBABILITY
AND BIT HISTORY \/\
505
QUTPUT VALUE SPECIFYING
POSITION OF LAST <
SECTION AS CODE

506

U.S. Patent

Sep. 14, 2021 Sheet 7 of 11

FIG. 5B
(START)

h 4

A 4

REFER TO PROBABILITY
FROM BIT HISTORY

2 S

—_

\ 4

DIVIDE RANGE INTO TWO SECTIONS
IN ACCORDANCE WITH PROBABILITY

.S

A

SELECT ONE SECTION TO WHICH
INPUT CODE BELONGS

C_"\S

A 4

QUTPUT BIT VALUE INDICATED

>

US 11,119,702 B1

BY SELECTED SECTION

514

A

YES
OUTPUT ENDS?

NO 515

A 4

UPDATE USED PROBABILITY
AND BIT HISTORY \/\

516

(END)4

U.S. Patent

Sep. 14, 2021

Sheet 8 of 11

FIG. 6

600

N

US 11,119,702 B1

BIT HISTORY
"
INPUT BIT STRING
aosp” V= (et 02
\
058" T
s0sc” T
/\/—J
605D D 1 /\/603/\ 606
X_| P -
R s EnconeR »] SUB-CODE QUTPUT CODE
. o)
BE) e
00 [025 _1—> ENCODER » SUB-CODE
01 | 065 =
] T
T | L Encooer > SUB-CODE
110 0.5 o R
1] 015 61— 1 003D
PROBAB!UT}/};M » ENCODER > SUB-CODE
TABLE

=N
601D

U.S. Patent

Sep. 14, 2021 Sheet 9 of 11

A 4

FIG. 7
C START)
y
CREATE N TYPES OF BIT

HISTORIES FROM INPUT BIT

US 11,119,702 B1

>

A 4

REFER TO N PROBABILITIES
IN ACCORDANCE WITH BIT
HISTORIES

S

y

DIVIDE EACH OF N RANGES INTO
TWO SECTIONS IN ACCORDANCE
WITH PROBABILITIES

y

EACH SELECT ONE SECTION IN
ACCORDANCE WITH INPUT BIT

E‘;S

A 4

INPUT ENDS?

701

~
[
o

YES

NO

A 4

UPDATE USED
N PROBABILITIES

>

OUTPUT CODE BY LINKING
N VALUES THAT SPECIFY
POSITION OF LAST SECTION

>

705

706

A

707

US 11,119,702 B1

Sheet 10 of 11

Sep. 14, 2021

U.S. Patent

3000 LNdNI
7

c08

33002-dns

3a0o-9NSs

3400-9NS

LLLA8 N
—» ¥300030 |e
] .
0LLa8 \ |~ :
» ¥300030 e
I
pog J18VLALMIGYEON
4300030 | A
— 510 | Wb
: S0 | oLl
¥30093a . 70 N
I : [0/0 0l
a8 P 590 110
v e e
_ v
m SE0 | 0
¥300030 |« ()d X
. [
0 e
V8
mmowyx/ =
» ¥30003Q |e
Lo
ofe ONRLS 118 LNd1NO > 008

8 Old

U.S. Patent Sep. 14, 2021 Sheet 11 of 11 US 11,119,702 B1

FIG. 9
(START)

y

CREATE POSSIBLE BIT HISTORY CANDIDATES

(K1 ENR K_TW RIT TOTAI 2N_ 1\
£ y IVTAL £7- 1)

FPAANEINT R DL

A 4

>

901

A 4

REFER TO 2- 1 PROBABILITIES IN ACCORDANCE
WITH BIT HISTORY CANDIDATES

8§

y

DIVIDE EACH OF 2N-1 (2¢! FOR K-TH BIT) RANGES INTO
TWO SECTIONS IN ACCORDANCE WITH PROBABILITIES

&>

y

EACH SELECT ONE SECTION TO WHICH INPUT CODE BELONGS

S

Y

GENERATE 2V- 1 BIT VALUES INDICATED BY SELECTED SECTION

>

905

A 4

DETERMINE AND OUTPUT CORRECT N-BIT STRING
BASED ON 2V- 1 GENERATED VALUES

>

905

y YES
OUTPUT ENDS?

NO

S

906

A

UPDATE N PROBABILITIES IN ACCORDANCE WITH
CORRECT PATTERN AND ADOPT N DIVIDED RANGES

C END)<

>

907

US 11,119,702 Bl

1
APPARATUS FOR PROCESSING RECEIVED
DATA

CLAIM OF PRIORITY

The present application claims priority from Japanese
patent application JP 2020-208090 filed on Dec. 16, 2020,
the content of which is hereby incorporated by reference into
this application.

BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to a technique for decoding
an input code compressed based on a range code.

2. Description of the Related Art

For a storage system, which is an information device for
accumulating and managing a large amount of data, cost per
capacity can be reduced by storing a larger amount of data.
Therefore, some storage systems have a function of com-
pressing written data and storing the compressed data in a
disk drive.

For example, recently, as a storage medium of a storage
system, a solid state drive (SSD) equipped with a NAND
flash memory, which is a nonvolatile semiconductor
memory, has been adopted in addition to or instead of a hard
disk drive (HDD). Since the SSD does not have a physical
head seek mechanism such as an HDD in data access, the
SSD has a small head delay (latency) and has excellent
response performance in random data read.

For this reason, in an application such as a database in
which high-speed random read is required, replacement
from an HDD to an SSD has progressed as a storage medium
of a storage system. It is noted that bit cost of the SSD has
been reduced year by year with a high integration of flash
memory cells, but still remains as high as about 3 times bit
cost of the HDD.

In many cases, a storage system using an SSD as a storage
medium has a function of reducing a size of data to be stored
in the SSD by introducing a lossless compression technique.
As a result, storage capacity of the system can be made to
appear virtually large, and the cost per capacity can be
reduced so as to approach that of a storage system using an
HDD as a storage medium.

When the storage system receives a read request for
compressed data from a host, the compressed data is decom-
pressed, restored to an original plaintext data, and then
replied to the host. It is preferable that decompression
processing of the compressed data is performed as fast as
possible so that a read response time at that time is not
significantly deteriorated as compared with a case of reading
uncompressed data.

The higher the compression ratio of a compression algo-
rithm employed for a data compression function of the
storage system, the lower the cost per capacity. An LZMA
algorithm is a lossless data compression algorithm known to
have a high compression ratio. In this algorithm, slide
dictionary compression is combined with an arithmetic code
called a range code.

In a processing based on the range code, it is necessary to
perform multiplication each time one bit is input (at the time
of coding) or output (at the time of decoding). Therefore, a
bit rate of the processing based on the range code is very
slow. Although a table is referenced for a value used for

10

15

20

25

30

35

40

45

50

55

60

65

2

multiplication in the processing based on the range code, an
index for reference is determined by a bit history of the input
(at the time of coding) or the output (at the time of
decoding). When the multiplication in the processing based
on the range code can be performed in parallel for a plurality
of bits, performance thereof is improved, and processing
performance of the LZMA algorithm is improved.

As for coding processing based on the range code (at the
time of compression), there has been known a technique in
which a bit history is prepared in advance, a table reference
is parallelized, and multiplication is performed on a plurality
of bits in parallel to increase a speed, as in “A Parallel
Adaptive Range Coding Compressor: Algorithm, FPGA
Prototype, Evaluation”, Ivan Shcherbakov and Norbert
Wehn, Data Compression Conference, 2012 (Non-PTL 1).
When a degree of parallelism is N, coding performance is
improved by N times. As a result, compression processing of
L7ZMA can be speeded up.

In decoding of a range code (at the time of decompres-
sion), since a bit history is uncertain until an immediately
preceding bit is decoded, it is difficult to perform multipli-
cation using a table reference and a reference value of the
table reference for a plurality of bits in parallel.

Therefore, for example, when a range code is applied to
a compression and decompression function of a storage
system, a read response time to a read request from a host
increases, and convenience of the storage system may dete-
riorate since decompression performance is low.

SUMMARY OF THE INVENTION

According to an aspect of the invention, there is provided
an apparatus for processing received data. The apparatus
includes: a circuit configured to receive an input code
compressed based on a range code; and a decompression
circuit configured to decompress a part or all of the input
code to decode an N-bit string, in which N represents an
integer greater than 1, and K represents an integer from 1 to
N, a bit value of a K-th bit of the input code is decoded based
on a bit history of a bit before the K-th bit, and the
decompression circuit is configured to calculate a plurality
of candidate bit values for each bit of the N-bit string based
on a plurality of possible bit histories of the bit before the
K-th bit in parallel for a plurality of bits, and repeatedly
select a correct bit value of the K-th bit from the plurality of
candidate bit values based on a correct bit history of the bit
before the K-th bit to decode the N-bit string.

According to an aspect of the invention, decoding of a
range code can be speeded up.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a configuration example of a storage sys-
tem.

FIG. 2A shows an outline of an LZMA algorithm.

FIG. 2B shows a specific example of dictionary compres-
sion processing.

FIG. 3A shows a functional block diagram of range
coding.

FIG. 3B shows a functional block diagram of range
decoding.

FIG. 4A shows an example for explaining a principle of
a range code.

FIG. 4B shows another example for explaining the prin-
ciple of the range code.

FIG. 5A shows a flowchart of range coding processing.

FIG. 5B shows a flowchart of range decoding processing.

US 11,119,702 Bl

3

FIG. 6 shows a functional block diagram of a speed-up
method of the range coding processing.

FIG. 7 shows a flowchart of the speed-up method of the
range coding processing.

FIG. 8 shows a functional block diagram of a speed-up
method of the range decoding processing.

FIG. 9 shows a flowchart of the speed-up method of the
range decoding processing.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the following description, when necessary for conve-
nience, an embodiment may be divided into a plurality of
sections or embodiments in the description. However, unless
otherwise specified, these are not unrelated to one another,
but in a relationship where one is a modification, a detail,
supplementary explanation, and the like of a part or all of
another. In the following description, when a reference is
made to the number of elements and the like (including a
count, a numeric value, an amount, a range and the like),
unless otherwise specified and limited theoretically appar-
ently to a specific number and the like, the number is not
limited to the specific number and may be either equal to or
larger than or equal to or less than the specific number.
(1) System Configuration

Hereinafter, a storage system having a data compression
function will be described as an embodiment of the present
specification. The storage system reduces an amount of
stored data by lossless compression. Decoding of a range
code described in the present specification can be applied to
a system different from the storage system, for example, a
communication system.

FIG. 1 shows a configuration example of the storage
system according to the embodiment of the present speci-
fication. A storage system 101 includes a host interface (I/F)
102, a storage controller 103, a plurality of solid state drives
(SSD) 105, and a cache memory 106 using a volatile
memory such as a dynamic random access memory
(DRAM).

The storage controller 103 is connected to the host I/F
102, the SSD 105, and the cache memory 106, and includes
a microprocessor that controls the host I/F 102, the SSD 105,
and the cache memory 106. The microprocessor executes
content interpretation of a read and write command from a
host (not shown), data transmission and reception to and
from the host, data compression and decomptession by an
LZMA compression and decompression circuit 104, and
data transfer between the SSD 105 and the cache memory
106.

The host I/F 102 is an interface mechanism for connecting
to an external host, and responds to the read and write
command so as to transmit data to the host or receive data
from the host. A mechanism of the host I/F 102 and a
protocol for transmitting and receiving a command and data
conform to, for example, a standard interface standard.

The storage controller 103 includes the LZMA compres-
sion and decompression circuit 104 and a transfer circuit
108. The transfer circuit 108 receives and transmits data
compressed or decompressed by the LZMA compression
and decompression circuit 104. The transfer circuit 108
transfers data between components of the storage system
101, for example, between the LZMA compression and
decompression circuit 104 and the cache memory 106. The
LZMA compression and decompression circuit 104 revers-
ibly compresses received write data in accordance with a
write command to reduce an amount of data to be stored in

20

25

40

45

50

60

65

4

the SSD 105, which is a storage drive, and generates
compressed data. In addition, in order to transmit original
plaintext data to the host in accordance with the read
command, the compressed data read from the SSD 105 is
decompressed to generate plaintext data.

The write data from the host is first temporarily stored in
the cache memory 106. At this time, the storage controller
103 replies write completion to the host. Thereafter, the
write data is converted into compressed data through the
LZMA compression and decompression circuit 104, and the
compressed data is also temporarily stored in the cache
memory 106. Then, the compressed data is written to the
SSD 105.

On the other hand, the read data to the host is read from
the SSD 105 in a compressed state, and is first temporarily
stored in the cache memory 106. Thereafter, the read data is
converted into plaintext data through the LZMA compres-
sion and decompression circuit 104, and the plaintext data is
also temporarily stored in the cache memory 106. Then, the
plaintext data is transmitted to the host.

As described above, in the data write, compression pro-
cessing is executed after replying the write completion, so
that write performance visible to the host is constant regard-
less of whether the data is compressed or not; but the data
read is not completed until the data reply to the host is
completed, and thus read response performance visible to
the host depends on a decompression time of the compressed
data. That is, the LZMA compression and decompression
circuit 104 is required to perform decompression processing
with high performance.

The LZMA compression and decompression circuit 104 is
implemented as, for example, hardware (logic circuit)
designed based on a data decompression method according
to an embodiment of the present specification. Since the
LZMA compression and decompression circuit 104 has
high-speed data decompression performance, the storage
system 101 can utilize high-speed random read perfor-
mance, which is a feature of the SSD, not only for uncom-
pressed data but also for compressed data. A function of the
LZMA compression and decompression circuit 104 may be
implemented by a plurality of processing devices that
execute a program. The processing device includes a pro-
cessor, a processor core, a central processing unit, and the
like. A storage drive different from the SSD, for example, a
hard disk drive (HDD) may be used.

(2) LZMA Algorithm

The LZMA algorithm will be described with reference to
FIGS. 2A to 5B as premise knowledge for describing the
data decompression method according to the embodiment of
the present specification.

(2-1) Outline of LZMA Algorithm

FIG. 2A shows an outline of the LZMA algorithm. In
LZMA compression processing, plaintext data 201 before
compression is first subjected to dictionary compression
processing 202. After that, a dictionary compression result is
subjected to a range coding processing 203. As a result,
LZMA compressed data 204 is generated.

On the other hand, in the LZMA decompression process-
ing, the compressed data 204 is first subjected to range
decoding processing 205. After that, a decoding result is
subjected to plaintext developing processing 206. Thus, the
original plaintext data 201 is generated.

(2-2) Dictionary Compression Processing

FIG. 2B shows a specific example of the dictionary
compression processing 202 constituting the LZMA algo-
rithm. Whether the same character string appears again in a
character string stream of the plaintext data 201 is checked

US 11,119,702 Bl

5

in order. When a certain character string coincides with L
characters consecutively from a character ahead by I char-
acters counted from a first character of the certain character
string as a starting point, the character string is converted
into a copy symbol [L, J].

For example, a character string 211 of four characters “b,
¢, d, €” coincides with 4 characters consecutively from a
character ahead by 6 characters counted from a first char-
acter “b” of the character string 211 as a starting point. In
this case, the character string 211 is converted into a copy
symbol [4, 6]. Similarly, a character string 212 of four
characters “a, b, a, b” coincides with 4 characters consecu-
tively from a character ahead by 2 characters counted from
a first character “a” of the character string 212 as a starting
point (including parts overlapping each other). In this case,
the character string 212 is converted into a copy symbol [4,
2].

Similarly, a character string 213 of four characters “c, d,
e, 7 coincides with 4 characters consecutively from a
character ahead by 14 characters counted from a first char-
acter “c” of the character string 213 as a starting point. In
this case, the character string 213 is converted into a copy
symbol [4, 14]. Since an amount of data of these copy
symbols is smaller than the amount of data of the original
character string, the amount of data can be reduced by this
conversion.

A range of a character string stream (hereinafter referred
to as a dictionary) referred to in a coinciding search is set to
a range from a character ahead by 1 character to a character
ahead by a predetermined number of characters. The com-
pression technique is also called slide dictionary compres-
sion because the dictionary range slides backwards with
each search. When there are a plurality of coinciding char-
acter strings in the dictionary range, the longest consecutive
coinciding character string is converted into a copy symbol.
This has an effect of further reducing the amount of data.

In order to generate data to be input to the range coding
processing 203 in a subsequent stage, it is necessary to code
characters that are not converted into copy symbols (here-
inafter, referred to as literal characters) and copy symbols
with a prescribed bit pattern, and link the characters and the
copy symbols to form a bit stream.

FIG. 2B shows a bit stream as a result of coding according
to a rule of an LZMA specification. The bit stream is input
to the range coding processing 203. For example, a bit
pattern 221 represents the copy symbol [4, 6] with a length
of 12 bits. A bit pattern 222 represents the copy symbol [4,
2] with a length of 11 bits. A bit pattern 223 represents the
copy symbol [4, 14] with a length of 13 bits. As described
above, a bit pattern length corresponding to the copy symbol
is not fixed. On the other hand, a literal character is repre-
sented by a 9-bit length bit pattern in which 1 bit of 0 is
added to the beginning of an 8-bit value of the character.

The range decoding processing 205 outputs such a bit
stream in the LZMA decompression processing. In the
plaintext developing processing 206, when such a bit stream
is input, the bit stream is interpreted as a copy symbol or a
literal character, and the character string stream of the
plaintext data 201 is restored.

(2-3) Range Coding and Decoding Processing

FIG. 3A shows a functional block diagram of range
coding, and FIG. 3B shows a functional block diagram of
range decoding. A range coding function 300 will be
described with reference to FIG. 3A. An encoder 301 is a
calculation block that receives an input from an input bit
string 302 in units of one bit and generates an output code
303. In an example in FIG. 3A, the input bit string is “1, 1,

5

10

15

20

25

30

35

40

45

50

55

60

65

6

0, 1”. A method of generating the output code 303 will be
described below with reference to FIGS. 4A and 4B. The
output code 303 corresponds to compressed data of the
LZMA algorithm (LZMA compressed data 204 in FIG. 2A).

The encoder 301 also uses a probability value cited from
a probability table 304 as an input. The probability value P
(x) indicates probability that a next input bit from the input
bit string 302 is “0” when a bit history 305 input so far is x.

The encoder 301 performs adaptation by learning each
time the probability value P (x) is used. For example, when
the next input bit is actually <07, P (x) is increased, and when
the next input bit is “1”, P(x) is decreased. Values of all P(x)
in an unused state at a start of encoding are 0.5 (the
probabilities of “0” and “1” are equal).

Next, a range decoding function 310 will be described
with reference to FIG. 3B. A decoder 311 is a calculation
block that receives an input code 312 and generates an
output bit string 313 in units of one bit. The generation
method will be described below with reference to FIGS. 4A
and 4B. The output bit string 313 corresponds to an input bit
stream to the plaintext developing processing (plaintext
developing processing 206 in FIG. 2) of the LZMA algo-
rithm, that is, an output bit stream from the dictionary
compression processing 202 in FIG. 2.

The decoder 311 also uses a probability value cited from
a probability table 314 as an input. The probability value P
(x) indicates probability that a next output bit is “0” when a
bit history 315 output so far is x.

Similarly to the encoder 301, the decoder 311 performs
adaptation by learning each time the probability value P(x)
is used. For example, when the next output bit is actually
“0”, P(x) is increased, and when the next input bit is “1”, P
(x) is decreased. Values of all P(x) in an unused state at a
start of decoding are 0.5 (the probabilities of “0” and “1” are
equal).

When the output code 303 of the range coding function
300 and the input code 312 of the range decoding function
310 are the same, changes due to learning of all the
probability values P(x) of the probability table 304 and the
probability table 314 are the same. Therefore, a change at the
time of coding is reproduced at the time of decoding.
(2-4) Principle of Range Coding and Decoding

FIGS. 4A and 4B show examples for explaining a prin-
ciple of range coding and decoding. In the coding processing
performed by the encoder 301 in FIG. 3A, a numerical axis
of [0, 1) is divided by a length corresponding to the
probability that each bit value of the input bit string is “0”,
and one of sections is repeatedly left as a division target for
a next bit. In the coding processing, coordinate values
included in a finally left section are output as a code. When
the bit is “0”, a left section is left after division, and when
the bit is “1”, a right section is left after division. The
probability that each bit value is “0” is acquired from the
probability table 304 using the input bit history up to that
time as an index.

According to a definition of the LZMA algorithm, the bit
history for referring to the probability value is cleared under
predetermined conditions. For example, in a case of 9 bits
representing literal characters, the encoder 301 codes a first
bit out of 8 bits excluding a header 1 bit by using a bit history
of NULL. The encoder 301 codes a last eighth bit using first
to seventh bits as a bit history, and then clears the bit history.

In the decoding processing performed by the decoder 311
in FIG. 3B, as shown in FIGS. 4A and 4B, the numerical axis
of [0, 1) is divided by a length corresponding to the
probability that each bit value of the output bit string is “0”.
Further, the decoder 311 checks which section the input code

US 11,119,702 Bl

7

(coordinate value) is included in, determines each bit of the
output bit string, and repeatedly leaves the section in which
the input code is included as a division target for the next bit.
Then, all the values of the output bit string are finally
determined.
When a code is included in the left section in the division,
the decoder 311 determines that the bit is “0”, and when a
code is included in the right section, the decoder 311
determines that the bit is “1”. The probability that each bit
value is “0” is acquired from the probability table 314 using
the output bit history up to that time as an index.
The decoder 311 clears the bit history for referring to the
probability value under the same conditions as the coding.
For example, in the case of 9 bits representing literal
characters, the decoder 311 decodes the first bit out of the 8
bits excluding the header 1 bit by using the bit history of
NULL. The decoder 311 decodes the last eighth bit using the
first to seventh bits as the bit history, and then clears the bit
history.
FIGS. 4A and 4B each show a transition example of
numerical axis division in coding and decoding processing
of a bit string “1, 1, 0, 1”. It is noted that the value of the
probability that the bit value is “0” is different. In an
example in FIG. 4A, the probability value that the bit value
is “0” is normally 0.5. In an example in FIG. 4B, the
probability values that the bit value is “0” are 0.25, 0.25,
0.75, and 0.25, respectively, in bit order. FIG. 4A shows a
case where the probability values referred to from the
probability tables 304 and 314 are in an initial state. FIG. 4B
shows a case where the probability values referred to from
the probability tables 304 and 314 are changed by learning.
When the bit string “1, 1, 0, 17 is frequently processed in
the range coding and decoding, it is learned in the probabil-
ity tables 304 and 314 that “1” is likely to appear first, “1”
is likely to appear next when the history is “1”, “0” is likely
to appear next when the history is “117, and “1” is likely to
appear next when the history is “110”. When learning of
such a probability proceeds and prediction of how a bit
appears is correct, the output code of range coding becomes
shorter.
A flow of coding in FIG. 4A is as follows.
First step: A right 1/2 section [1/2 to 2/2] is left according
to the input “1”.

Second step: A right 1/2 section [3/4 to 4/4] is left
according to the input “1”.

Third step: A left 1/2 section [6/8 to 7/8] is left according
to the input “0”.

Fourth step: A right 1/2 section [13/16 to 14/16] is left
according to the input “1”.

13/16 (1101 in binary) included in a last section is set as
the output code 401.

A flow of coding in FIG. 4B is as follows.

First step: A right 3/4 section [1/4 to 4/4] is left according
to the input “1”.

Second step: A right 3/4 section [7/16 to 16/16] is left
according to the input “1”.

Third step: A left 3/4 section [28/64 to 55/64] is left
according to the input “0”.

Fourth step: A right 3/4 section [139/256 to 220/256] is
left according to the input “1”.

3/4 (11 in binary) included in a last section is set as the
output code 411.

As the bit string is input according to the prediction based
on the probability, a size of the section left in the division
becomes larger. Therefore, the number of bits required to
express the coordinate values of the output code included in
the finally left section is small. In the example in FIG. 4A,

15

20

25

40

45

60

65

8

4 bits are required, whereas in the example in FIG. 4B, only
2 bits are required. As described above, the range code
improves the compression ratio by learning the bit occur-
rence probability according to the bit history.

(2-5) Flowchart of Range Coding and Decoding

FIG. 5A shows a flowchart of an example of the range
coding. FIG. 5B shows a flowchart of an example of the
range decoding. First, a procedure of the range coding will
be described with reference to FIG. 5A.

The encoder 301 refers to the probability value that the
next bit is “0” from the probability table 304 in accordance
with the input bit history (501). The encoder 301 divides a
numerical axis range (division target range) into two sec-
tions in accordance with the probability value (502). Mul-
tiplication of a range size and the probability value is
performed when dividing. This is apart that takes the longest
time in the coding processing. Then, the encoder 301 selects
one of the two sections in accordance with whether the input
bit value is “0” or “1” (503).

Next, in step 504, the encoder 301 determines whether the
input of the bit ends. When the input of the bit ends (504:
YES), the process proceeds to step 506. When there is still
an input (504: NO), the process proceeds to step 505.

In step 505, the encoder 301 updates the probability value
used for the probability table 304, and updates the bit history
for coding a next bit. The update of the probability value is
to increase the probability value when the input bit value is
“0”, and decrease the probability value when the input bit
value is “1”. In the update of the bit history, the bit history
is changed to “110” when the input bit next to “11” is “0”,
for example. Thereafter, the encoder 301 returns to step 501
and continues the coding processing.

On the other hand, in step 506, the encoder 301 outputs,
as a code, a coordinate value specifying the section left at
last, for example, a value having the smallest number of
expression bits among values included in the section, and
ends the coding processing.

A procedure of an example of the range decoding will be
described with reference to FIG. 5B. The decoder 311 refers
to the probability table 314 in accordance with the output bit
history, and acquires the probability value that the next bit
is “0” (511). The decoder 311 divides the numerical axis
range into two sections in accordance with the probability
value (512). The multiplication of a range size and the
probability value is performed when dividing. This is a part
that takes the longest time in the decoding processing. Then,
the decoder 311 selects a section in which the value of the
input code is included among the two sections (513). The
decoder 311 outputs the bit value “0” or “1” indicated by the
selected section (514).

Next, in step 515, the decoder 311 determines whether the
output of the bit ends. When the output of the bit ends (515:
YES), the decoder 311 ends the decoding processing. When
there is still an output (515: NO), the decoder 311 proceeds
to step 516.

In step 516, the decoder 311 updates the probability value
used for the probability table 314, and updates the bit history
for decoding a next bit. The update of the probability value
is to increase the probability value when the output bit value
is “0”, and decrease the probability value when the output bit
value is “1”. In the update of the bit history, the bit history
is changed to “110” when the output bit next to “11” is “0”,
for example. Thereafter, the decoder 311 returns to step 511
and continues the decoding processing.

(3) Speed-Up Method of Range Coding Processing

FIG. 6 shows a functional block diagram of an example

of a speed-up method of range coding processing. The

US 11,119,702 Bl

9

LZMA compression and decompression circuit 104 in FIG.
1 performs compression processing shown in this block
diagram. In the example described with reference to FIGS.
3A to 5B, multiplication processing is performed with
reference to the probability every time 1 bit is input.
Therefore, only 1 bit can be processed in one calculation
cycle, which may cause the processing performance of the
LZMA algorithm to be slow.

A range coding function 600 shown in FIG. 6 speeds up
the range coding processing by operating a plurality of
encoders at the same time. That is, N ranges to be divided
are prepared (N>1), and N types of bit histories are prepared
in advance from the input bit string. The range coding
function 600 simultaneously refers to N probability values in
the probability table, and performs the multiplication pro-
cessing on N input bits in parallel to improve the coding
performance by N times.

FIG. 6 shows an example of coding in a case of N=4
according to the speed-up technique. All of four encoders
601A to 601D perform the same processing as the encoder
301 in FIG. 3A. Each encoder acquires and uses the prob-
ability value one by one from the probability table 604.
These four probability values are referred to using bit
histories 605A to 605D as indexes.

The bit history 605A is used when a first bit “1” of the
input bit string 602 is processed by the encoder 601A, and
a value thereof is NULL. The bit history 605B is used when
a second bit “1” of the input bit string 602 is processed by
the encoder 601B, and a value thereof is “1”.

The bit history 605C is used when a third bit “0” of the
input bit string 602 is processed by the encoder 601C, and
a value thereof is “11”. The bit history 605D is used when
a fourth bit “1” of the input bit string 602 is processed by the
encoder 601D, and a value thereof is “110”.

In general, the bit history used for encoding the N-th bit
is formed by linking the first to (N-1)-th bits. By preparing
four types of bit histories in this way, the four encoders 601A
to 601D can simultaneously refer to the four probability
values from the probability table 604 and simultaneously
perform multiplication using these probability values.

Four sub-codes 603A to 603D output from the encoders
601A to 601D are finally linked to form an output code 606.
The output code 606 corresponds to compressed data of the
LZMA algorithm. According to this method, since the input
of 4 bits can be processed in one calculation cycle, the
performance of range coding in the compression processing
of the LZMA algorithm is improved 4 times as high as that
of the related art.

FIG. 7 shows an example of a flowchart of the speed-up
method of range coding described with reference to FIG. 6.
A procedure of the speed-up method of range coding will be
described with reference to the flowchart in FIG. 7. First, the
LZMA compression and decompression circuit 104 creates
N types of bit histories used for coding N bits of the input
bit string (701). N is an integer of 2 or more. N encoders
acquire the probability values that the next bit is “0” from
the probability table based on the respective bit histories
(702). The N encoders divide each of N numerical axis
ranges (division target ranges) into two sections in accor-
dance with the probability values (703).

The multiplication of the range size and the probability
value by the N encoders is executed in parallel. In a first
cycle, the numerical axis range (range size) is common to
the N encoders, and is [0, 1) in the example shown in FIG.
6. In second and subsequent cycles, the section selected by
the encoder in the previous cycle becomes a target numerical

20

25

30

35

40

45

60

65

10

axis range (range size). Each encoder selects one of the two
left and right sections in accordance with whether the input
bit value is “0” or “1” (704).

Next, in step 705, the LZMA compression and decom-
pression circuit 104 determines whether the input of the bit
ends. When the input of the bit ends (705: YES), the process
proceeds to step 707. When there is still an input (705: NO),
the process proceeds to step 706. In step 706, the LZMA
compression and decompression circuit 104 updates the N
probability values used for the probability table. The update
of the probability value is to increase the probability value
when the input bit value is “0”, and decrease the probability
value when the input bit value is “1”.

Thereafter, the LZMA compression and decompression
circuit 104 returns to step 701 and continues the coding
processing. For example, when N is 4 and the coding of 8
bits of the literal character is performed, first-half 4 bits are
coded in the first cycle in this flow, and second-half 4 bits are
coded in the second cycle. In the second cycle, the bit history
used for coding a fifth bit is a bit string of the first-half 4 bits.

For example, when the input bit string is 6 bits, for
example, first-half 4 bits or 3 bits may be coded in the first
cycle, and second-half 2 bits or 3 bits may be coded in the
second cycle. The maximum value of the input bit string to
the LZMA compression and decompression circuit 104 is 4,
and a bit string equal to or less than 4 bits can be coded.

In step 707, each encoder generates a coordinate value
specifying a section left at last, for example, a value having
the smallest number of expression bits among values
included in the section. The LZMA compression and decom-
pression circuit 104 outputs the bit string obtained by linking
the N bits as a code, and ends the encoding processing.

In the example of the range coding shown in FIG. 6, the
integer N>1, and the number of input bits is N bits, that is,
the length of the bit history is the maximum (N-1) bits. In
the range coding, a coding speed can be increased to N times
by using N ranges to be divided. As mentioned in the
example of 8 bits of the literal character in the description
with reference to FIG. 7, when an integer M>N and the
number of input bits is M bits, that is, the length of the bit
history is the maximum (M-1) bits, the coding of the input
bits can be speeded up by using N ranges to be divided.

Hereinafter, the method will be described by taking a case
of M=8 and N=4 as an example. The LZMA compression
and decompression circuit 104 includes a probability table
of 255 entries having a bit history of up to 7 bits as an index.
The LZMA compression and decompression circuit 104
prepares four types of bit histories (NULL, 1 bit, 2 bits, and
3 bits, separately) to be used for coding the first-half 4 bits
of the input bit string of 8 bits, and refers to four probability
values corresponding thereto in the probability table at the
same time. The LZMA compression and decompression
circuit 104 codes the first-half 4 bits in parallel in the first
cycle using these probability values.

Next, the LZMA compression and decompression circuit
104 prepares four types of bit histories (4 bits, 5 bits, 6 bits,
and 7 bits each including the first-half 4 bits at the head) used
for coding the second-half 4 bits of the input bits, and
simultaneously refers to the four corresponding probability
values from the probability table. The LZMA compression
and decompression circuit 104 codes the second-half 4 bits
in parallel in the second cycle using these probability values.

In this way, the LZMA compression and decompression
circuit 104 processes the input of 8 bits in two cycles (that
is, 4 times the performance), generates four sub-codes, and
links the sub-codes to configure an output code.

US 11,119,702 Bl

11

In general, in the coding processing of the range code to
which M bits are input, M bits are processed in [M/N]
calculation cycles by using N encoders and the probability
table of the (2"M-1) entries having the bit history of the
maximum (M-1) bits as an index, thereby improving the
performance thereof. The LZMA compression and decom-
pression circuit 104 may generate a sub-code without per-
forming the parallel processing.

(4) Speed-Up Method of Range Decoding Processing

Speed-up of the range decoding processing by N times
cannot be implemented only by operating N decoders 311 in
FIG. 3B in parallel. This is because the bit history used in the
processing of a certain decoder X is uncertain until a decoder
Y that decodes the previous bit outputs a processing result.
Therefore, the reference of the probability value from the
probability table and the multiplication using the value by
the decoder X cannot performed at the same time as the
reference of the probability value from the probability table
and the multiplication using the value by the decoder Y, and
parallelization cannot be implemented.

Hereinafter, a method of speeding up range decoding
processing according to the embodiment of the present
specification will be described. FIG. 8 shows a functional
block diagram of a speed-up method of range decoding
processing. The LZMA compression and decompression
circuit 104 in FIG. 1 performs decompression processing by
a range decoding function 800 shown in this block diagram.

FIG. 8 shows an example of range decoding when N=4,
that is, the number of bits of the output bit string is 4. All of
fifteen decoders 8A (one), 8B0 and 8B1 (two), 8C00 to 8C11
(four), and 8D000 to 8DI111 (eight) perform the same
processing as the decoder 311 in FIG. 3B. In FIG. 8, some
of the decoders are not shown. Four sub-codes 803A to
803D input to these fifteen decoders are separated from an
input code 802 (corresponding to the compressed data of the
LZMA algorithm), and are the same as the four sub-codes
603A to 603D in FIG. 6. One sub-code may be shared by a
plurality of decoders.

Each decoder acquires the probability value one by one
from the probability table 804 and uses the probability value
to output a candidate bit value. These fifteen probability
values are values referred to using all possible bit histories
as indexes.

A value of the bit history used by the one decoder 8A for
decoding the first bit of an output bit string 806 is NULL.
Values of the bit histories used by the two decoders 8B0 and
8B1 for decoding the second bit of the output bit string 806
are “0” and “1”, respectively.

Values of the bit histories used by the four decoders 8C00
to 8C11 for decoding the third bit of the output bit string 806
are “00”,“017, <107, and “11”, respectively. Values of the bit
histories used by the eight decoders 8D000 to 8D111 for
decoding the fourth bit of the output bit string 806 are “000”,
“0017, “010”, “011”, “100”, <1017, “110”, and “111”,
respectively.

In general, the number of bit histories used for decoding
the K-th bit is 2°(K-1). Each bit history is a bit pattern (bit
string) of (K-1) bits that may be the first to (K-1)-th bits of
the output bit string 806. By preparing fifteen types of bit
histories in this way, these fifteen probability values are
simultaneously referred to from the probability table 804,
and the fifteen decoders simultaneously perform multiplica-
tion using these probability values.

When the first bit of the output bit string 806 output by the
decoder 8A is “1”, it can be seen that the second bit output
by the decoder 8B1 which has decoded assuming that the
first bit is “1” among the decoders 8B0 and 8Bl is a correct

20

25

30

40

45

55

60

65

12

result. A selector 805B selects “1” output by the decoder
8B1 from two second bit candidates output by the decoders
8B0 and 8B1. That is, the first and second bits are deter-
mined to be “11”.

From this, it can be seen that the third bit output by the
decoder 8C11 which has decoded assuming that the first and
second bits are “11” among the decoders 8C00 to 8C11 is a
correct result. A selector 805C selects “0” output by the
decoder 8C11 from four third bit candidates output by the
decoders 8C00 to 8C11. That is, the first to third bits are
determined to be “110”.

From this, it can be seen that the fourth bit output by the
decoder 8D110 which has decoded assuming that the first to
third bits are “110” among the decoders 8D000 to 8D111 is
a correct result. A selector 805D selects “1” output by the
decoder 8D110 from eight fourth bit candidates output by
the decoders 8D000 to 8D111.

Thus, itis determined that the 4 bits of the output bit string
806 are “1101”. In general, the LZMA compression and
decompression circuit 104 includes 2°(K-1) decoders for
decoding the K-th bit, and holds 2"(K-1) K-th bit candidates
output from these decoders. The LZMA compression and
decompression circuit 104 selects, as the K-th bit, a candi-
date output by one decoder which has decoded assuming
that the value of the first to (K-1)-th bits that have already
been determined is the bit history.

Bit selection processing by the selectors 805B to 805D is
performed in a sufficiently shorter time than the multiplica-
tion processing by the decoder. According to this method, an
output of 4 bits can be processed in one calculation cycle.
Therefore, the performance of the range decoding process-
ing in the decompression processing of the LZMA algorithm
is improved 4 times as high as that in the related art.

A procedure of the speed-up method of range decoding
described with reference to FIG. 8 will be described below
with reference to FIG. 9. First, the LZMA compression and
decompression circuit 104 creates (2"N-1) bit histories that
may be used to decode N bits in the output bit string (901).
The number of bit histories used for decoding the K-th bit is
2°(K-1).

(2'N-1) decoders acquire the probability value that the
next bit is “0” from the probability table 804 in accordance
with the bit history assigned to each decoder (902), and
divide the numerical axis range (division target range) into
two sections in accordance with the probability value (903).
The numerical axis range divided by the 2"(K-1) decoders
used for decoding the K-th bit is common. Specifically, the
numerical axis ranges of all the decoders are common in the
first cycle, and are [0, 1) in the example in FIG. 8. In second
and subsequent cycles, the numerical axis range of the
decoder of the K-th bit is a range of a division result obtained
by the decoder that outputs a correct value of the K-th bit in
the previous cycle. The multiplication of the range size and
the probability value is performed when dividing.

The decoder selects a section in which the value of the
input sub-code is included among the two sections (904),
and generates a bit value “0” or “1” indicated by the selected
section (905). The number of generated bit values is (2"N-
1), and the number of K-th bit candidates is 2"(K~1). Then,
the selector selects one correct bit from the candidates in
order from the first bit, and determines and outputs a pattern
of N bits (906). In the selection of the correct value of the
K-th bit, the correct values of the first to (K-1)-th bits are
used as a bit history.

Next, in step 906, the LZMA compression and decom-
pression circuit 104 determines whether the output of the bit
ends. When the output of the bit ends (906: YES), the LZMA

US 11,119,702 Bl

13

compression and decompression circuit 104 ends the decod-
ing processing. When there is still an output (906: NO), the
LZMA compression and decompression circuit 104 pro-
ceeds to step 907.

In step 907, the LZMA compression and decompression
circuit 104 updates the N probability values used for the
probability table 804. The update of the probability value is
to increase the probability value when the output bit value is
“0” and decrease the probability value when the output bit
value is “1”. Further, the LZMA compression and decom-
pression circuit 104 adopts the section selected in step 904
by the decoder that has output the correct bit value as the
numerical axis range of a next cycle. The section selected in
step 904 by one decoder that has output the correct value of
the K-th bit among the 2°(K-1) decoders for the K-th bit is
adopted as the numerical axis range divided in step 903 in
next decoding of the K-th bit.

Thereafter, the LZMA compression and decompression
circuit 104 returns to step 901 and continues the decoding
processing. For example, as for the 8 bits of the literal
character, when the first-half 4 bits and the second-half 4 bits
are coded in two cycles, the bit history used for decoding the
fitth bit in the second cycle in the present flow is a bit string
of the first-half 4 bits.

For example, when input data of 6 bits is coded in two
cycles by being divided into the first-half 4 bits and remain-
ing 2 bits, the LZMA compression and decompression
circuit 104 may decode 4 bits or 3 bits in the first cycle and
then decode 2 bits or 3 bits in the second cycle. The
maximum value of the input bit string to the LZMA com-
pression and decompression circuit 104 is 4, and a bit string
equal to or less than 4 bits can be decoded.

In the speed-up method of range code decoding process-
ing shown in FIG. 8, when the integer N>1, the number of
input bits is N bits (that is, the length of the bit history is the
maximum (N-1) bits), and the speed is increased to N times
by using N ranges to be divided. As mentioned in the
example of 8 bits of the literal character with reference to
FIG. 9, when the integer M>N and the number of input bits
is M bits, that is, the length of the bit history is maximum
(M-1) bits, the decoding of the output bit string can be
speeded up by using the N ranges to be divided.

Hereinafter, an example of decoding an output bit string
of 8 bits will be described. The LZMA compression and
decompression circuit 104 includes fifteen decoders as in
FIG. 8, and inputs four sub-codes separated from input
codes (corresponding to compressed data of the LZMA
algorithm) to these fifteen decoders as in FIG. 8. Each
decoder acquires and uses the probability value one by one
from a probability table of 255 entries having a bit history
of up to 7 bits as an index.

The fifteen probability values referred to in the first cycle
are values referred to by using all the bit histories (NULL,
1 bit, 2 bits, and 3 bits, separately) that may be the first-half
4 bits of the output bit string of 8 bits as indexes. The value
of the bit history used by one decoder that decodes the first
bit of the output bit string is NULL.

The values of the bit histories used by the two decoders
that decode the second bit of the output bit string are “0” and
“17, respectively. The values of the bit histories used by the
four decoders that decode the third bit of the output bit string
are “00”, “017, “10”, and “11”, respectively. The values of
the bit histories used by the eight decoders that decode the
fourth bit of the output bit string are “000”, “001”, <0107,
“0117, “100”, “101”, “110”, and “111”, respectively.

The fifteen decoders perform multiplication in parallel
using the probability values referred to in these bit history.

20

25

35

40

45

55

60

65

14

Then, similarly to FIG. 8, the bit selection processing of the
selector determines the values of the first bit to the fourth bit
in order. Here, for example, “1101” is determined.

Next, the fifteen probability values referred to in the
second cycle are values referred to by using all the bit
histories (4 bits, 5 bits, 6 bits, and 7 bits each including
“1101” determined in the first cycle at the head) that may be
the second-half 4 bits of the output bit string of 8 bits as
indexes.

The value of the bit history used by one decoder that
decodes the fifth bit of the output bit string is “1101”. The
values of the bit histories used by the two decoders that
decode the sixth bit of the output bit string are “11010” and
“110117, respectively. The values of the bit histories used by
the four decoders that decode the seventh bit of the output
bit string are “1101007, “110101”, “110110”, and 1101117,
respectively.

The values of the bit histories used by the eight decoders
that decode the eighth bit of the output bit string are
“11010007, “1101001”, *“11010107, “1101011”, “1101100>,
“11011017, “11011107, and “1101111”, respectively.

The fifteen decoders perform the multiplication in parallel
using the probability values referred to in these bit histories.
Then, similarly to FIG. 8, the bit selection processing of the
selector determines the values of the fifth bt to the eighth bit
in order.

As in FIG. 8, the bit selection processing of the selector
is performed in a sufficiently shorter time than the multipli-
cation processing of the decoder. Therefore, according to
this method, the output of 8 bits can be processed in two
calculation cycles. As described above, in the probability
table of 255 entries, 15 entries are referred to in the first
cycle, and 15 entries are selected from the remaining 240
entries and referred to in the second cycle. In the second
cycle, the number of entries to be referred to is narrowed
down to Yis by indexing with the bit history including the
first-half 4 bits determined in the first cycle.

In general, in the decoding processing of the range code
from which M bits are output, M bits are processed in [M/N]
calculation cycles by using (2"N-1) encoders and the prob-
ability table of the (2"M-1) entries having the bit history of
the maximum (M-1) bits as an index, thereby improving the
performance thereof.

As described above, according to the embodiment of the
present specification, data compressed by the range code can
be decompressed at high speed. Therefore, for example, in
an apparatus storage system having a data compression
function based on a range code algorithm, read response
performance of compressed data can be improved.

The invention is not limited to the embodiments described
above, and includes various modifications. For example, the
embodiments described above are described in detail for
easy understanding of the invention, and the invention is not
necessarily limited to those including all the configurations
described above. In addition, a part of the configuration of
one embodiment can be replaced with the configuration of
another embodiment, and the configuration of another
embodiment can be added to the configuration of one
embodiment. A part of the configuration of each embodi-
ment can be added, deleted, or replaced with another con-
figuration.

Each of the configurations, functions, processing units,
and the like described above may be partially or entirely
implemented by hardware such as through design using an
integrated circuit. The above configurations, functions, and
the like may also be implemented by software by means of
interpreting and executing a program, by a processor, for

US 11,119,702 Bl

15

implementing respective functions. Information of pro-
grams, tables, files or the like for implementing each func-
tion can be placed in a recording device such as memory,
hard disk, and Solid State Drive (SSD), or a recording
medium such as an IC card and an SD card.

In addition, control lines and information lines are those
that are considered necessary for the description, and not all
the control lines and the information lines on the product are
necessarily shown. In practice, almost all the configurations
may be considered to be mutually connected.

What is claimed is:
1. An apparatus for processing received data, the appara-
tus comprising:

a circuit configured to receive an input code compressed
based on a range code; and

a decompression circuit configured to decompress a part
or all of the input code to decode an N-bit string,
wherein

N represents an integer greater than 1, and K represents an
integer from 1 to N,

a bit value of a K-th bit of the input code is decoded based
on a bit history of a bit before the K-th bit, and

the decompression circuit is configured to

calculate a plurality of candidate bit values for each bit of
the N-bit string based on a plurality of possible bit
histories of the bit before the K-th bit in parallel for a
plurality of bits, and

repeatedly select a correct bit value of the K-th bit from
the plurality of candidate bit values based on a correct
bit history of the bit before the K-th bit to decode the
N-bit string.

2. The apparatus according to claim 1, wherein

the decompression circuit is configured to

store probability values of a bit value appearing in accor-
dance with the bit history, and

select and update a probability value corresponding to a
bit history based on correct bits constituting the
decoded N-bit string from the stored probability values.

3. The apparatus according to claim 1, wherein

in calculation of the candidate bit values of the K-th bit in
the N-bit string, multiplication of a division target
range by probability values of 2"(K-1) bit histories is
performed to divide the division target range into two
sections, and each of 2"(K-1) candidate bit values is
determined from a section specified by a sub-code
among the two sections of the K-th bit in the input code.

4. The apparatus according to claim 1, wherein

when the number of bits to be decoded from the entire
input code is larger than a preset maximum value, the
decompression circuit performs decoding of a bit string
based on a part of the input code for a plurality of
cycles.

5. The apparatus according to claim 4, wherein

in a second and subsequent cycles of the plurality of
cycles, a division target range for determining each of
the candidate bit values of the K-th bit is a section
corresponding to a correct bit value of the K-th bit in an
immediately preceding cycle.

6. A storage system, comprising:

an interface configured to receive a request from a host;
and

a controller configured to execute writing of data to a
storage drive and reading of data from the storage drive
in accordance with a command from the host, wherein

the controller includes the decompression circuit accord-
ing to claim 1,

10

20

25

30

35

40

45

50

55

60

65

16

the controller is configured such that, in accordance with
a read command from the host, the input code trans-
ferred from the storage drive is decoded by the decom-
pression circuit to generate read data, and

the read data is replied to the host via the interface.

7. The storage system according to claim 6, wherein

the decompression circuit is configured to

store probability values of a bit value appearing in accor-

dance with the bit history, and

select and update a probability value of each of correct bit

values constituting the decoded N-bit string from the
stored probability values.
8. The storage system according to claim 6, wherein
in calculation of the candidate bit values of the K-th bit in
the N-bit string, multiplication of a division target
range by probability values of 2°(K-1) bit histories is
performed to divide the division target range into two
sections, and a candidate bit value is determined from
each of 2"(K-1) sections for a sub-code of the K-th bit
in the input code.
9. The storage system according to claim 6, wherein
when the number of bits to be decoded from the entire
input code is larger than a preset maximum value, the
decompression circuit performs decoding of a bit string
based on a part of the input code for a plurality of
cycles.
10. The storage system according to claim 9, wherein
in a second and subsequent cycles of the plurality of
cycles, a division target range for determining each of
the candidate bit values of the K-th bit is a section
corresponding to a correct bit value of the K-th bit in an
immediately preceding cycle.
11. A method for decoding an N-bit string by decom-
pressing a part or all of an input code compressed based on
a range code, N representing an integer greater than 1, K
representing an integer from 1 to N, the method comprising:
calculating candidate bit values of each bit of the N-bit
string in parallel, in calculation of candidate bit values
of a K-th bit in the N-bit string, multiplication of a
division target range by probability values of each bit
history being performed to divide the division target
range into two sections, and a candidate bit value being
determined from each section for a sub-code of the
K-th bit in the input code; and

selecting a correct bit value of the K-th bit from the
candidate bit values based on a correct bit history of a
bit before the K-th bit to decode the N-bit string.

12. The method according to claim 11, further compris-
ing:

selecting and updating probability values of each correct

bit value constituting the decoded N-bit string from the
preset probability values.

13. The method according to claim 11, wherein

in calculation of candidate bit values of the K-th bit in the

N-bit string, multiplication of a division target range by
probability values of 2°(K-1) bit histories is performed
to divide the division target range into two sections, and
a candidate bit value is determined from each of
2"(K-1) sections for a sub-code of the K-th bit in the
input code.

14. The method according to claim 11, further compris-
ing:

performing decoding of a bit string based on a part of the

input code for a plurality of cycles when the number of
bits to be decoded from the entire input code is larger
than a preset maximum value.

US 11,119,702 Bl
17 18

15. The method according to claim 14, wherein

in a second and subsequent cycles of the plurality of
cycles, a division target range for determining each of
the candidate bit values of the K-th bit is a section
corresponding to a correct bit value of the K-th bitinan 5
immediately preceding cycle.

L T S

	Info
	Abstract
	Drawing
	Description

