US010496479B2

a2 United States Patent

Akutsu et al.

US 10,496,479 B2
Dec. 3, 2019

(10) Patent No.:
45) Date of Patent:

(54)

(71
(72)

(73)

*)

21

(22)

(65)

(62)

(30)

Sep. 30, 2014

(51

(52)

(58)

DISTRIBUTED STORAGE SYSTEM
Applicant: Hitachi, Ltd., Tokyo (JP)

Inventors: Hiroaki Akutsu, Tokyo (JP); Shunji
Kawamura, Tokyo (JP); Kota
Yasunaga, Tokyo (JP); Takahiro
Yamamoto, Tokyo (JP); Atsushi
Kawamura, Tokyo (IP)

Assignee: Hitachi, Ltd., Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

Appl. No.: 16/108,265

Filed: Aug. 22, 2018

Prior Publication Data
US 2018/0357127 A1~ Dec. 13, 2018
Related U.S. Application Data

Division of application No. 15/120,840, filed as
application No. PCT/IP2015/077853 on Sep. 30,
2015.

Foreign Application Priority Data

.................. PCT/IP2014/076105

(WO)

Int. CL.
GO6F 11/10
GO6F 3/06

(2006.01)
(2006.01)
(Continued)
US. CL
CPC GO6F 11/1076 (2013.01); GOGF 3/064
(2013.01); GO6F 3/067 (2013.01);
(Continued)
Field of Classification Search
CPC GO6F 2211/1028; GO6F 11/1076; GO6F
3/067; HO4L 67/1097
See application file for complete search history.

A 018

(56) References Cited
U.S. PATENT DOCUMENTS
5,388,108 A * 2/1995 DeMoss GO6F 11/1008
714/6.12
5,488,731 A 1/1996 Mendelsohn
(Continued)
FOREIGN PATENT DOCUMENTS
Jp 2000-039970 A 2/2000
Jp 2003-131818 A 5/2003
(Continued)

OTHER PUBLICATIONS

International Search Report of PCT/JTP2015/077853 dated Dec. 15,
2015 and Written Opinion.

(Continued)

Primary Examiner — Joseph D Torres
(74) Attorney, Agent, or Firm — Mattingly & Malur, PC

57 ABSTRACT

A first node group including at least three nodes is pre-
defined in a distributed storage system. Each node of the first
node group is configured to send data blocks stored in
storage devices managed by the node to other nodes belong-
ing to the first node group. A first node is configured to
receive data blocks from two or more other nodes in the first
node group. The first node is configured to create a redun-
dant code using a combination of data blocks received from
the two or more other nodes and store the created redundant
code to a storage device different from storage devices
holding the data blocks used to create the redundant code.
Combinations of data blocks used to create at least two
redundant codes in redundant codes created by the first node
are different in combination of logical addresses of constitu-
ent data blocks.

14 Claims, 45 Drawing Sheets

101C 101D

\

4 N

Node

Write Data

4))

Node Node

/

Write Data

US 10,496,479 B2

Page 2
(51) Int. CI. 2002/0169827 A1 11/2002 Ulrich
2002/0191311 Al 12/2002 Ulrich
HOAL 25/08 (2006‘01) 2002/0194526 A1 12/2002 Ulrich
HO3M 13/29 (2006.01) 2004/0064633 Al 42004 Oota
(52) US. CL 2004/0128587 Al 7/2004 Kenchammana-Hosekote
CPC ... GOGF 3/0619 (2013.01); HO3M 13/2906 %882;88;83;2 ﬁi %882 ga:ayama
atayama
(2013.01); HO4L 67/1097 (2013.01); GO6F 2005/0125549 Al 6/2005 Katazama
2211/1028 (2013.01) 2006/0047896 Al 3/2006 Nguyen et al.
2006/0248088 Al* 11/2006 Kazar ... GO6F 3/0611
(56) References Cited 2006/0248273 Al* 11/2006 Jernigan, [V GO6F 3/061
711/114
U.S. PATENT DOCUMENTS 2006/0248379 Al* 11/2006 Jernigan, [V ... GOGF 3/0607
714/6.12
5,519,849 A * 5/1996 Malan GOGF 3/0601 2007/0101069 Al* 52007 Corbett ..o GO6F 12/0815
711/114 711/141
5,680,678 A 11/1997 Stallmo 2007/0156842 Al 7/2007 Vermeulen
6,460,122 Bl 10/2002 Otterness 2007/0214183 Al 9/2007 Howe
6,990,547 B2 1/2006 Ulrich 2008/0295094 Al 11/2008 Korupolu
6,990,667 B2 1/2006 Ulrich 2009/0049240 Al* 2/2009 Oe ..ovvovvvrvivrnnen GO6F 11/2061
7,054,927 B2 5/2006 Ulrich 711/114
7,296,180 B1 11/2007 Waterhouse 2009/0077443 Al 3/2009 Nguyen et al.
7,313,663 B2* 12/2007 Hirakawa GO6F 11/2074 2009/0216986 Al* 82009 Sakurai GOGF 3/0607
711/112 711/170
7,328,303 Bl 2/2008 Waterhouse 2009/0307524 A1 12/2009 Kumano
7,389,393 Bl * 6/2008 Karrccocoovvvenenn, GO6F 3/0613 2009/0328151 Al 12/2009 Tamura
711/103 2010/0064166 Al 3/2010 Dubnicki
7,536,693 Bl 5/2009 Manczak 2010/0180153 Al* 7/2010 Jernigan, IV ... GOGF 11/1076
7,546,342 B2 6/2009 Li et al. 714/6.12
7,552,356 Bl 6/2009 Waterhouse 2011/0138144 Al1* 6/2011 Tamura GOG6F 3/0608
7,636,814 B1* 12/2009 Karrcc..cooveee. GOG6F 12/0804 711/166
711/143 2011/0202721 Al* 82011 Popovski GO6F 11/1076
7,734,643 Bl 6/2010 Waterhouse 711/114
7,743,210 BL* 6/2010 Jernigan, IV GO6F 3/0619 2011/0208995 Al 8/2011 Hafner et al.
711/114 2011/0208996 Al* 8/2011 Hafner GOGF 9/466
7,827,350 Bl 11/2010 Jiang 714/6.24
7962,68 Bl* 6/2011 Kazarcoco... GO6F 3/061 2011/0289052 A1 11/2011 Rambacher
711/100 2012/0079189 Al* 3/2012 Colgrove GO6F 3/0605
7.975,102 B1* 72011 Hyer, Ir. ...cccccece. GOGF 3/0614 711/114
711/114 2012/0079318 Al 3/2012 Colgrove
8,001,580 BL1* 82011 Hyer Jr. GO6F 17/30171 2012/0084504 Al 4/2012 Colgrove
726/2 2012/0084507 Al 4/2012 Colgrove
8,082,362 Bl * 12/2011 EWing ..o, GO6F 17/302 2012/0260150 Al* 10/2012 Cideciyan GO6F 11/1008
370/241 714/773
8,302,192 B1* 10/2012 Cnuddec.ovvvevne, HO4L 63/145 2012/0290714 A1 11/2012 Cohen
726/22 2013/0111166 AL 5/2013 Resch
8,578,094 B2* 11/2013 Chambliss GOGF 11/1076 2013/0138908 Al 52013 Iwasaki
71114 2013/0204849 Al 82013 Chacko
8,645,799 B2* 2/2014 Li wooercorvemrrcn GO6F 11/1076 2015/0227318 Al* 8/2015 Banka GOG6F 3/0617
714/770 709/202
8,756,598 Bl * 6/2014 Costea GOGF 9/45558
717/174 FOREIGN PATENT DOCUMENTS
8,910,156 Bl 12/2014 Kenchammana-Hosekote
9,430,330 Bl 8/2016 Bardhan JP 2004-126716 A 4/2004
2001/0044879 Al1* 11/2001 Moulton GOG6F 3/0617 JP 2008-511064 A 4/2008
711/114 JP 2012-033169 A 2/2012
2001/0048284 Al 12/2001 Moulton JP 2013-114624 A 6/2013
2002/0048284 Al* 4/2002 Moulton GO6F 11/1076 JP 2014-53005 A 3/2014
370/500
2002/0124137 Al 9/2002 Ulrich
2002/0138559 Al 9/2002 Ulrich OTHER PUBLICATIONS
2002/0156840 Al 10/,2002 Ulr!ch United States Non-Final Office Action received in corresponding
2002/0156891 Al 10/2002 Ulrich -
2002/0156974 Al 1072002 Ulrich US. Appl. No. 15/662,510 dated Dec. 15, 2017. .
, . Japanese Office Action received in corresponding Japanese Appli-
2002/0161846 Al 10/2002 Ulrich P ponding Jap Pp
2002/0161850 Al 10/2002 UlrlCh cation NO 2016-552148 dated Mar 6, 2018
2002/0161973 Al 10,2002 Ulrich U.S. Final Office Action received in corresponding U.S. Appl. No.
2002/0165942 Al [1/2002 Ulrich 15/662,510 dated Apr. 20, 2018.
2002/0166026 Al 11/2002 Ulrich
2002/0166079 Al 11/2002 Ulrich * cited by examiner

U.S. Patent

Dec. 3, 2019

Sheet 1 of 45

US 10,496,479 B2

NODE 101A NODE
T 1501A 1ok
N
/
DATA , 1303 hso1B
108 DATAZ
CACHE 181] || | CACHE 181 CACHE 181
[DATAT | >{ DATAT
[DATAZ J [DATAZ |
13 U Nisooall 113 D 15028 13 M
<1/ - -
A i
[DAIAL_| P \ DATAZ | P
NODE 101D . [NopE 10E
DATAS
§ 1303
| 1501C
CACHE 181 CACHE 181
>[DATAT | !
[DATAZ | 5 [DATA3 |
113 3 13
1502C |
(| DATA} | P
R | ! l l
D Sy P

U.S. Patent Dec. 3, 2019 Sheet 2 of 45 US 10,496,479 B2

L——-——.m-—u-——.—-—-—uu—*-— 3

do o e e e e o o of

U.S. Patent Dec. 3, 2019 Sheet 3 of 45 US 10,496,479 B2

COMPUTER NODE 101 112
— / 119 H
. ‘ I/ .
PROC-
/ MEMORY ESSOR

M

w
115/:

§

Qf j x
DRIVES (TIER1) 8 ,
e S l

NETWORK

COMPUTER DOMAIN

COMPUTERNODE 101 COMPUTER NODE 101

104

!

!

i

COMPUTER NODE 101 v | COMPUTERNODE 101 ;
1

I

i

I

1

U.S. Patent Dec. 3, 2019 Sheet 4 of 45 US 10,496,479 B2

MEMORY 118
PROTECTION LAYER 201 VIRTUALIZED PROVISIONING
INFORMATION INFORMATION 202
STATIC MAPPING TABLE
LAYER #1 210 PAGE MAPPING TABLE 215
STATIC MAPPING TABLE
LAYER #2 211 PAGE LOAD FREQUENCY
TABLE 218
STATIC MAPPING TABLE
LAYER #3 212 PAGE LOAD DISTRIBUTION
TABLE 217
LOG-STRUCTURED 213
MAPPING TABLE
C&ggﬁéﬁfg\w 214 CACHE INFORMATION 204
&%QS?X%QT&ON 203 DRIVE MANAGEMENT TABLE 220
VIRTUAL VOLUME 991
VANAGEMENT TeBLE 218 DRIVE STATE MANAGEMENT TABLE 221
NODE STATE MANAGEMENT TABLE 222
POOL VOLUME 219
MANAGEMENT TABLE
SITE STATE MANAGEMENT TABLE 223

~ -
\\ .
-
~ -
~ o
~ -
Ay
~ Z
~
N -
.

MEMORY
(BACKUP)

220

Fig. 4

U.S. Patent Dec. 3, 2019 Sheet 5 of 45 US 10,496,479 B2

VIRTUAL VOLUME MANAGEMENT TABLE 218
e (sfi)ng) USENODE# | SYNG/ASYNC
0:0100 0x21210000 | 0x00,0x01,0:02 | GEQ: ASYNC
SITE : SYNC
NODE : SYNC
0:0101 0x12301200 | 0500
0x1100 0x42123000 | OX00, 0x01, 0402
0x2100 012124120 | 0x00, 0302
03100 0x12181230 | 0X00, 0403, 0x04

Fig. 5A

POOL VOLUME MANAGEMENT TABLE 219
POOL
VOLUMES SIZE (BLOCK) NODE#
0x0000 0x21210000 0x00
0X0001 0x12301200 0x00
0x1000 0x42123000 0x01
0x2000 0x12124120 0x02
0x3000 0xi2181230 0x03
Fig. 5B
DRIVE MANAGEMENT TABLE 220
POOL
VOLUMES TYPE DRIVE# SIZE (BLOCK)
0x0000 SSD 0x40 0x20000000
Oxd 0x20000000
0x42 0x20000000
0x0001 NL-SAS 0x20 OXE0000000
(7 2Krpm) 021 OXE0060000
0x22 OXE0000000

Fig. 5C

U.S. Patent

Dec. 3, 2019 Sheet 6 of 45 US 10,496,479 B2

DRIVE STATE MANAGEMENT TABLE 221
DRIVE# STATE ERROR COUNT
0x40 NORMAL 0
Ox41 NORMAL 0
0x42 FAILURE 50
0x20 NORMAL 0
0x21 WARNING 4
0x22 NORMAL 0
Fig. 5D
NODE STATE MANAGEMENT TABLE 222
NODE# STATE ERROR COUNT
0x00 NORMAL 0
0x01 NORMAL 0
0x02 FAILURE 10

Fig. 5E

SITE STATE MANAGEMENT TABLE 223
SITE# STATE ERROR COUNT
(x00 NORMAL 0
0x01 NORMAL 0
0x02 FAILURE 200

Fig. 5F

U.S. Patent Dec. 3, 2019 Sheet 7 of 45 US 10,496,479 B2

PAGE MAPPING TABLE 215
VIRTUAL POOL
VOLUME LBA RANGE | voLumEs LBA
0x0000
0x0001
Fig. 6A
PAGE LOAD FREQUENGY TABLE 216
VIRTUAL
JOLUMER LBA RANGE | 10 FREQUENCY
6x0000
0x0001
Fig. 6B
PAGE LOAD DISTRIBUTION TABLE
(AMIONG SITE /AMONG NODE /INNODE) 217
0 FREQUENCY LEVEL PAGE AMOUNT

Fig. 6C

U.S. Patent

Dec. 3, 2019

Sheet 8 of 45

US 10,496,479 B2

STATIC MAPPING TABLE (LAYER #2 (SITE)) 211

SITE STRIPE DATA NODE # REcDggE%N ! RE(?(‘)JDNED(Q)N !
NODE # NODE #
0x0000 0x00, 0x10, 0x20, 0x30 0x52 0x43
0x0001 0x00, 0x21, 0x22, 0x35 (x32 Ox41
0x0002
0x0003
0x0004
Fig.7A
STATIC MAPPING TABLE (LAYER #3 (GEQ)) 212A
G o DATA SITE # REc%JgED(ﬁ\)N ! REC%J{S%N !
SITE # SITE #
0x0000 0X00, 0x10, 0x20, 0x30 0X52 0x43
0x0001 0X00, 021, 0x22, DX35 0x32 Ox41
0x0002
0x0003
0x0004
Fig. 7B
CONSISTENT HASHING TABLE (LAYER#3 (GEO)) 2128
REDUNDANT CODE(1) | REDUNDANT CODE(2)
EXIST NODE # EXIST NODE # EXIST NODE #
(HASH) (HASH)
0x0000 0X3A22 0X5012
0X0001 0x1024 0X3F25
0X0002 0x120E 0x4860
0x0003 0x5932 0%9A23
0x0004 0x4012 0X592C

Fig. 7C

U.S. Patent Dec. 3, 2019 Sheet 9 of 45 US 10,496,479 B2

LOG-STRUCTURED MAPPING TABLE 213

DATAMAPPING TABLE 701

LBAOFFSET
LDEV# STRIPE# (DATA)

0 0 0
1]

PHYSICAL
DRIVE/LBALEN STATE

0x43,0x0003,8 | STATE

0x42,0x0007,8 | STATE

REDUNDANT CODE MAPPING TABLE 702
SITE# NODE#

4 3

LBA QFFSET

LDEV# STRIPE# {GEO CODE)

7 o s 0
6 | 5 1}2
R B 7

REVERSE MAPPING TABLE 703

PHYSICAL
DRIVE/LBAILEN

0x40,0x0020,8

0x41,0x0023,8

—— — A TaBLE TvPE: GEO CODE
DRIVE 113 INDEX NO: 2
a1 TABLE [UPDATE TIME : 2014/5/14 16:32
oAt | TaeiE I REFERENCE:
DATA | TABLE NDEx | SITE |NODE | LDEV | STRIPE | LBA
f . 5 gl ¢ | # # | OFFSET
¢ 0o | D] 3|7 8 0
731 732
—— — t | F | 5 | 4 13 0

U.S. Patent

Dec. 3, 2019

Sheet 10 of 45

US 10,496,479 B2

LOCALAREACONTROLTABLE 214
VALDLIST 801A |l INVALIDUST 8018 FREELIST 801C
DRIVE LBA oRvE LBA DRIVE LBA
Lo > 0 I e K L0 2
| 6|
| 9]
L] [} ®
L] ® ®
e ® ®
LOCAL AREAAMOUNT TABLE 802
TARGETAMOUNT | USED AMOUNT | VALID AMOUNT
DATATYPE (BYTES) (BYTES) (BYTES)
0x0000
0X0001
0x0002
0X0003
0x0004
NODE CODE
SITE CODE
GEO CODE
SPARE AREA

Fig. 9

U.S. Patent Dec. 3, 2019 Sheet 11 of 45 US 10,496,479 B2

CACHE INFORMATION 204

DATADIRTY QUEUE 900

sTesTRIETYPEf? @ {1
sTEsTRPETYPEY @ }— "}

CODE DIRTY QUEUE 901

STESTRIPETYPES0) @ —[""}—>
SITE STRPETYPER,! @—> >

ceosTRPETYPES @— {1
GEOSTRIPETYPEXS! @—____ F—[}—

MIDDLE DIRTY QUEUE 904

SITESTRIPETYPE) @ {1
smesTRPETYPEM @ — 1

ceosTriPETYPERO @—_____ +— 1>
GEOSTRIPETYPES,! @ P}

CLEAN QUEUE 902
FREE QUEUE 903

CACHE BITMAP TABLE 905

LOGICAL ADDR |CACHE ADDR| SIZE | DIRTY BITMAP | STAGING BITMAP

0110101011 01100111

Fig. 10

U.S. Patent Dec. 3, 2019 Sheet 12 of 45 US 10,496,479 B2

SITE STRIPE TYPE ©=5,p=1,d=3

ROW NUMBER |
NODE NUMBER —

5 \\\N\\‘?\\
7 AN

g\\\\\\\
g%\\\\‘\\\k\
ﬁﬁ%ﬁ&
?%%&%
“\\“\\\
“\‘\\\\\\\\\X\\\
“%&ﬁ&
AN
AN

0 1
3 3
B)
9 0
2 2

s coro = ol
—_

— | —

—

LS

O | ORI I
—

s~z = |e = M
w

8
10

7
11

.

13

13

13

FAILED

Fig. 11

U.S. Patent Dec. 3, 2019 Sheet 13 of 45 US 10,496,479 B2

FAILURE
(CANNOT
EXECUTE
o)

DATARESYNC
COMPLETE

NODE
FAILURE

DRIVE / NODE / SITE
ADD/DEL DRIVE FAILURE

(IN OWN NODE)

COMPLETE

CONFIGURATION
CHANGING

REBUILDING

NODE STATE TRANSITION GRAPH

Fig.12A

FAILURE
{CANNOT

EXECUTE DATARESYNC
SITE 110) COMPLETE
FAILURE
DRIVE /NODE / SITE
ADD/DEL NODE FAILURE
_ (IN OWN SITE)
COMPLETE

CONFIGURATION REBUILDING

CHANGING

SITE STATE TRANSITION GRAPH

Fig.12B

U.S. Patent Dec. 3, 2019 Sheet 14 of 45 US 10,496,479 B2

4 " VIRTUAL™ Y 7 VIRTUAL™ ™~
.Y
I~ < YOLUME _ - i~ YOME e
113028 | | I
1302/\«.L 'LL !
, o 1l
L 1=t | 13020 1 13018
S~ 13026 Tfmeea-

1306

115 —1303E

117

PAGE LOAD DISTRIBUTION

Fig.13

US 10,496,479 B2

Sheet 15 of 45

Dec. 3, 2019

U.S. Patent

101N
/

101B
/

/1 01A

VWOL
1301A
1303A
1303C
\{\/

NODE 1

Fig.14

U.S. Patent Dec. 3, 2019 Sheet 16 of 45 US 10,496,479 B2

11O PPROCESSING (READ)
START

PAGE
UNALLOCATED ?

8/512
RELEASE y S8
. EXCLUSIVITY -
/503 i\ EXCLUSIVITY 2
{ RESERVE CACHE } 7 ss07
_
$505 $504 p—
s v EXCLUSIVITY
TRANSFER READ
PROCESSING TO READ DATA FROM 508
REMOTE NODE POOL VOLAND
(WITHOUT CACHING RETURN DATA PAGE
LOCALLY) UNALLOCATED ?
Y
S509
v
RETURN
ZERO DATA
S$510
511 N
v
\
RELEASE
EXCLUSIVTY
|
\ 2

END

Fig. 15

U.S. Patent Dec. 3, 2019 Sheet 17 of 45 US 10,496,479 B2

YO PPROCESSING (SYNC WRITE)
START

3601

PAGE
UNALLOCATED 7

ALLOCATED

N
S603 T0 LOCAL POOL <
F VOV S618
TRANSFER WRITE 7
PROCESSING TO Y
REMOTE NODE [RELEASE]
(WITHOUT CACHING EXCLUSIVITY
LOCALLY) x 3611
TONEXTLAVER |, S604

{ OBTAIN }

EXCLUSIVITY

$609 { RESERVE CACHE]

CREATE
INTERMEDIATE
CODE

UNALLOCATED 2
Y

INTERMEDIATE
WRITE ‘ L4 5614
INTERMEDIATE S [DETERMINE POOL T
&OT[/}\ERE%CQ%’SE WRITE DATA ALLOCATE PAGE
(CHANGE TO TO CACHE IN ¥ S615
s TARGET NODE
)/ { (CHANGE TO DIRTY) ALLOCATE PAGE }/
S$610 S608 5616
N COMPLETED N
FORALL g

LAYERS ?

U.S. Patent

Dec.

3,2019 Sheet 18 of 45

O PPROCESSING (ASYNC WRITE)
START

|

TONEXT LAYER

TO NEXT PAGE

US 10,496,479 B2

A

S701

A4
\< N
WRITE ?

ASYNC

5702

h4

RESERVE CACHE IN
5704 (TARGET NODE }
W
CREATE
INTERMEDIATE CODE
TRANSFER
5705 INTERMEDIATE

CODE?

CODE TO CACHE IN

WRITE INTERMEDIATE

WRITE DATATO CACHE IN

TARGET NODE
{CHANGE TO DIRTY) TARGET NODE
(CHANGE TO DIRTY)
) 4 S708
COMPLETED P
N FORALL LAYERS ? <

S709

COMPLETED FOR ALL PAGES ?

U.S. Patent Dec. 3, 2019 Sheet 19 of 45 US 10,496,479 B2

/O PPROCESSING {DESTAGE)
START

TO NEXT DIRTY DATA

<
Y

S801

WRITE DATA ?
S802
FIND DIRTY DATA OF
SAME STRIPE TYPE
S808
Y
{ WRITE DATA TO DRIVES] S803
¥ ~

CALCULATE REDUNDANT DATA
AND WRITE IT TO DRIVES

S805

A 4

[REQUEST TO CLEAN J

Y 5806

COMPLETED FOR

ALLDIRTY DATA?

END

Fig. 18

U.S. Patent

Dec. 3, 2019

|

Sheet 20 of 45

|

DEPLETION
MANAGEMENT
START

S901

DOES AMOUNT
USED FOR DATATYPE
EXCEED TARGET
AMOUNT ?

END

REDUNDANT
CODE?

S907

4

ANY INVALID

US 10,496,479 B2

(

EXECUTE REDUNDANT
REDUNDANT CODE CODE ?
MERGE PROCESSING
- Y
S909
DOES AMOUNT
8903 USED FOR DATA TYPE N
Y EXCEED TARGET
AMOUNT 7
S908
v
S906 RELEASE
v STORAGE AREA
EXECUTE REDUNDANT EXECUTE
CODE GLEAN-UP REBALANCING
PROCESSING
f S805
/
RELEASE
STORAGE AREA

-

Fig. 19

U.S. Patent Dec. 3, 2019 Sheet 21 of 45 US 10,496,479 B2
CACHE (BUFFER) T201 181 181 181
Z/ Z 783
J J
781 18
181 D D
=\l
= ||| =) ==
x] X"C'H [c |]
EVii78 1] I ¥ | | § OISR B || | R
DRIVE DRIVE
13 113 DRIVE DRIVE
13 113
1018 101C 101D

101A

U.S. Patent Dec. 3, 2019 Sheet 22 of 45 US 10,496,479 B2

PROCESSING

SAVING/REBUILDING
START

LAYER N
ABNORMAL
STATE TO UPPER LAYER

) AL

FAILURE
STATE ?

4

EXECUTE PREFERENTIAL
REBUILDING

EXECUTE
PREFERENTIAL SAVING

COMPLETED

FORALLLAYERS ?

REVIEW OWNERS OF
VIRTUAL VOL

END

U.S. Patent Dec. 3, 2019 Sheet 23 of 45 US 10,496,479 B2

DATARESYNC PROCESSING
START

TO NEXT PROTECTION LAYER I'l

5221

REINSTATEMENT

PROCESSING? Y S222

v c

(CHECK AREAS IN NEED]
QOF RESTORATION

S225
\4 /
EXECUTE AREA

[RESTORATION PROCESSiNG]

$226
A4 /
[EXECUTE COPY BACK]
PROCESSING

8227

COMPLETED
FOR UPPERMOST
PROTECTION
LAYER?

END

Fig. 22

U.S. Patent

Dec.

3,2019 Sheet 24 of 45

N

US 10,496,479 B2

y AED
RELOGATION TO

v

RELOCATE TO
LOCAL NODE

[

Y

CHANGE
TIER

},Vszss

LOCAL NODE ?

Y NEED TIER

CHANGE ?

NEED
REBALANCING ?

REALLOCATION
PROCESSING
START)
CALCULATE OVERALL |
[THRESHOLDS ~\ 5281
J
CALCULATE LOCAL
[THRESHOLDS }\§232
\
REVIEW POOL VOL §233
CONFIGURATION
TONEXT PAGE
A\
5234

5239

y

EXECUTE
REBALANCING

|

A\ 4

U.S. Patent

Dec. 3, 2019 Sheet 25 of 45 US 10,496,479 B2
JOLOAD o
CAPABILITY |
L LT PAGE LOAD DISTRIBUTION
| 284 cppaciTy
N i
iy, | L 243
r’// o ; e T
/ 2%‘)/ ; ;!
P i
/ S Do
\; ‘;«H { TOTAL O LOAD
LOGAL THRESHOLD / \
W_J \ FEM
p / LOCAL
5 WOLOAD el
248 / H:M‘;vm .
~A FAGE
245
NETWORK
COEPTANCE
LIMIT

Fig. 24A

O LOAD NETWORK

C\/\w -
A _mmce PAGE LOAD DISTRIBUTION
| 245 capaciTy
- {"‘ LIMIT
;f“b \.,é X Z4J A
\é N iesy L TOTALIOLOAD
7 W
LOCAL THRESHOLD ¢ \ 24
{ Y
’ SO LOCAL e
24/6““/ L Mie_ HOLOAD f:J
: Sew 22 T
e PAGE
244
DRIVE
CAPABILITY
LRI

Fig. 24B

U.S. Patent Dec. 3, 2019 Sheet 26 of 45 US 10,496,479 B2

START

(" CHANGE STATIC MAPPING TABLE OF ”\§251
EACH PROTECTION LAYER

RECALCULATE TARGET AMOUNTS ’\§252

N

EXECUTE REBALANCING OF)
REDUNDANT CODES M\ 5263

EXECUTE REBALANGING AND
REALLOCATION OF PAGES ;\§254

Y

END
Fig. 25A

/101A /1018 /1010 /mm /1015

Lot Doy Doy ey |

Lo) Lad i e st |

La i) Lalll Lty Ladl | L]

Ls 11 Ls il Ls)| Lad] | L]
— =

101A 101B 101C 101D

101E
_

Lol Loy Lot Le 2
Lo) Lad) e d) Lad] | Led
s 11 Lad|] Ledif Lsd 4
Ls) s Lad] Led 3

Fig.25B

U.S. Patent Dec. 3, 2019 Sheet 27 of 45 US 10,496,479 B2

APPLICATION ,\3601 2603

-

OWN LOCATION (VOL:0x10, LBA:0x1000, LENGTH:4096KB)

STORAGE APPARATUS 2602
Y]

Fig. 26

2701

MANAGEMENT I/F

: 2702A
SITE Seftings — Network Performance: AUTO
SITE# A v FAILURE Threshold: 50
Takeover: SITE#C #F
Protection Policy. 1D1P

NODE Settings ,3/7 028 Network Performance: 40GB/s
NODE# 021 |w] FAILURE Threshold: 50

Takeover: NODE#0x04,#0x05,#0x06

Protection Policy: 5D3P

VOLUME Setiings 2702C
) Sync/ASYNC;

VOLUME# | 0x0003 |W1 Sync(NODE)/Sync(SITEYASYNC(GEO)
FAILURE Threshold: 50
Cache Mode: Write Through
Use NODE: 0x21,0x02,0x03

Fig. 27

U.S. Patent Dec. 3, 2019 Sheet 28 of 45 US 10,496,479 B2

COMPUTER DOMAIN 102

COMPUTER NODE 101 COMPUTER NODE 104

¥ BACKEND SWITCH L~ 2801

COMPUTER DOMAIN 102

COMPUTER NODE 101 COMPUTER NODE 101

BACKEND SWITCH [~ 2801

Y
s s s

US 10,496,479 B2

Sheet 29 of 45

Dec. 3, 2019

U.S. Patent

apoo
ARSI)

506¢ momm

-

emtzmv SYyoRD
vomm

gjeq Sl
\

BPON

997\

i

KEIL

NYEE

-

{18yng) syoeyy
o~

Eje ojMm

/

SPON

o101

¥

(tapng) msomorJ M

2062

{4

3jing) ayoen ’

ey

US 10,496,479 B2

Sheet 30 of 45

Dec. 3, 2019

U.S. Patent

-

eeq alm

SPON \

927\

-

SPON

\

o101

\’l\

3PON

Ele(oM

\

U.S. Patent Dec. 3, 2019 Sheet 31 of 45 US 10,496,479 B2

104
COMPUTER NODE 101 COMPUTER NODE 101
103 103
3101
i V4 i |
] V% Z
IF IF
BUFFER BUFFER
\ MEMORY \ MEMORY T | 3102
L
INTERNAL J INTERNAL _J
PROCESSOR V| PROCESSOR
3103
FLASH FLASH
MEMORY MEMORY
FLASH DRIVE || 3105 | FLASHDRIVE sz@ o

Fig.31

U.S. Patent Dec. 3, 2019 Sheet 32 of 45 US 10,496,479 B2

101 NODE

B i i .
3206{5%7%“
3212
3 10
7 2:;;)/
7

3202
]

3203 = ‘
A

COMPUTER ?é}

-‘.Olwrm‘":‘“ Nimm

3209
D DRIVE P1 DRIVE P2 DRIVE D DRIVE
o= N >y o=y
3219 3220 3221 3219

Fig.32

U.S. Patent

Dec. 3, 2019 Sheet 33 of 45 US 10,496,479 B2

LOGICAL/PHYSICAL (L/D) CONVERSION TABLE 3301 | FLASH MEMORY 3104
o302 e 30
" LOGICAL ! PHYSICAL
| ADDRESS ' ADDRESS
|| 00030 [0x0050 | o
1 1] [
| | 0x0040 [+ 0x0080 |
[I eegsonpeapoonrepergoonrena SN LI N corcmarorsensseareaseageons SN f
LOG CONVERSION TABLE 3304
_______ c:{?’_sp,s____________________./:{_3§96______;
' ADDRESS ! { LOG INFORMATION :
 IDENTIFIER %, |LOGICALADDRESS ~ PHYSICAL ADDRESS |!
H }
bl 0 ol | ox0030 0x0040 ;
{ ty t
] 3 i
§ 1 Ut [00030 0%0050 i
Yoo et e ”:...................................."...-....-...............;
PARITY-DATA (P-D) CONVERSION TABLE 3307
DATA STORAGE LOCATION
PARITY ST?@Q,%% LOCATION DRIVE NUMBER/LBA/len/
ADDRESS IDENTIFIER
0x0020, 8 0, 0x0020, 8, 0
1,0x0070, 8, 3
DATA-PARITY (D-P) CONVERSION TABLE 3308
DATA STORAGE DATASTORAGE ~ PARITY STORAGE LOCATION
LOCATION LBA LOCATION LBAflen
DRIVE NUMBER
0x0010 0 0x0030, 8
1 0x0060, 8
ADDRESS IDENTIFIER FREE QUEUE 3309
[0 T 1T 2] 3 I~

——

MEMORY

3104

FLASH DRIVE

Fig.33

U.S. Patent

Dec. 3, 2019

Sheet 34 of 45

LIST OF INTERFACES

US 10,496,479 B2

COMMND ARGUMENT OUTPUT DESCRIPTION
D_WRITE |1.DRIVE NUMBER __ |1:ADDRESS IDENTIFIER | WRITE DATAAND
™ 2:LBA RETURN ADDRESS
3: TRANSFER DATA IDENTIFIER
3401 LENGTH
P_WRITE |1:DRIVE NUMBER |N/A WRITE DATA WITH
2: TRANSFER DATA INFORMATION ON
LENGTH DATA STORAGE
~ 3:DATA STORAGE LOCATION
3402 INFORMATION
3-1) DRIVE NUMBER
3-2) LBA
3-2) ADDRESS
IDENTIFIER
D READ |1:DRIVENUMBER |N/A RETRIEVE LATEST
2:LBA DATA
~ 3: TRANSFER DATA
3403 LENGTH
OLD_D_READ|1:DRIVE NUMBER | N/A RETRIEVE OLD DATA
2 ADDRESS (FOR GARBAGE
o~ IDENTIFIER COLLECTION/
104 REBUILDING)
P_GET |1:DRIVENUMBER |1:PARITY SOURCE-DATA &%%Léﬁ%m o
INFORMATION []
1-1) DRIVE NUMBER SOURCE DATA OF
el 1-2) LBA PARITY FROM
3405 1-3) ADDRESS IDENTIFIER |PRIVE
P_PUSH |1:DRIVENUMBER |NIA g‘e@%ﬁé&%si g%FY
2:PARITY SOURCE- ,
DATA INFORMATION [} OTHER DRIVE(S) OF
A~ 2-1) DRIVE NUMBER ’S’\’ggé*gg\gmgﬁ
2.2} LBA
3406 PARITY (IN CASE OF
2:3) ADDRESS TWO OR MORE
IDENTIFIER PARITIES)
STAT GET |1:DRIVENUMBER |1:USAGE OF DRIVE MONITOR FOR
P CAPACITY
0 DEPLETION
INVALID |1:DRIVENUMBER |N/A INVALIDATE LOG
2: ADDRESS INFORMATION AND
P~ IDENTIFIER DATA ASSOCIATED
3408 WITH SPECIFIED
ADDRESS
IDENTIFIER
SEARCH |1DRIVENUMBER |1:INFORMATION ON SEARCH PARITY
PARITY TO BE DELETED | STORAGE DRIVE
1-1) DRIVE NUMBER FOR PARITY TO BE
A~ 1-2)LBA DELETED AND
3409 2: SOURCE-DATA ACQUIRE SOURCE
INFORMATION ON PARITY | DATA INFORMATION
TO BE DELETED é r-]a ON DETECTED
2-1) DRIVE NUMB PARITY
2-2) LBA
2.3) ADDRESS IDENTIFIER
2-4) INFORMATION ON
NEW OR OLD

Fig.34

U.S. Patent

‘ START]

Dec. 3, 2019

Sheet 35 of 45

READ PROCESSING (LATEST DATA)

h 4

IEND]

Fig.35

1
i
)
i
s
H
i
1
i
'

US 10,496,479 B2

101 /\3/219
COMPUTER NODE D DS!VE
E 53501 ;
{ /\/ |
» RECEIVE READ REQUEST |
RESERVE CACHE ;
$3504 ! 53505
l ~ : /”v/
D_READ TO D DRIVE RECCE(ID\&EM%&%EAD
: l S3506
5 ACQUIRE PHYSICAL
: ADDRESS FROM
| L/P CONVERSION TABLE
5 S3507
3 v ~
! $3509 READ FROM MEDIUM
i P~ 53508
3 yard
RECEIVE RESULT OF
D_READ FROM D DRIVE RETURN RESULT
S3510
1 /\/ ;
RETURN RESULT |, ,
TO HOST ;

U.S. Patent Dec. 3, 2019 Sheet 36 of 45 US 10,496,479 B2

READ PROCESSING (OLD DATA)

3219
101 /\/
COMPUTERNODE 1V D DRIVE
f START :
a0 3 $3602
¥ :
OLD D READ TO .| RECEIVE OLD_D_READ
D BRIVE COMMAND 33603
: !
! ACQUIRE PHYSICAL
* ADDRESS FROM
! LOG CONVERSION TABLE | gy
g Y /\/
! 53606 READ FROMMEDIUM | qqpne
¢ | SULTO ¢ ~
RECEIVE RESULTOF |
OLD_D READ FROMDRIVE | RETURN RESULT

e = g
&

Fig.36

U.S. Patent Dec. 3, 2019 Sheet 37 of 45 US 10,496,479 B2

| . WRITE PROCESSING
START | | COMPUTER NODE | 101 3219 3220
! DDRIVE v P1DRIVE |~ | P2DRIVE
RECEIVE WRITE REQUEST 33701 : 33 0 7
FROM HOST : 03 |
SSUED tvm"re 75 T—»{RECEIVE D_WRITE COMMAND] ; ;
D DRIVE 3 :
I ; /M WRITE TO MEDIUM_| ; :
83702 R 83704 v ! !
: | UPDATE METADATA (LIPAND | ! !
$3707 | g3705L_LOG CONVERSION TABLES) | ! ;
ha ’ ¥ ! :
RECEIVE RESULT OF RETURN RESULT _ |s3704 :
D_WRITE FROM D DRIVE[*™] (ADDRESS IDENTIFIER) [,
1 TO COMPUTER NODE . 83709 :
P WRITE TO P1 DRIVE 4_*[!
TOGETHER WITH DATA STORAGEY RECEIVE PWRITE COMMAND] :
INFORMATION IN D DRIVE § y 83710
S 83708 , [WRAE T% BUFFER_| ;
RECEIVE RESULTOF L | RETURN RESULT 70 |37 11!
P_WRITE FROMP1 DRIVE [* s3713 | COMPUTER NODE :
P WRITE %O P2 DRIVE v ! ‘ 53714’\ RECEIVE P_WRITE
TOGETHER WITH DATA STORAGE E s ARt
INFORMATION IN D DRIVE | S TOE R
E AU 83@\6 :
RECEIVE RESULT OF e ' ~ RETURN RESULT TO
P_WRITE FROM P2 DRIVE | START L= OMPUTER NODE
v : ;
RETURN RESULT o7 10 | |
TO HOST | :
END |
; 83721‘ CREATE 31 PARITY |
E ! UPDATE METADATA (P-DAND | !
5 : D-P CONVERSION TABLES) |
5 S3724 | $3722 Y ;
: o { WRITE TO MEDIUM | !
RECEIVE PARITY SOURCE- 153723 ¥ :
DATA INFORMATION FROM L™ SEND PARITY :
P1 DRIVE (P_GET)) | |SOURCEDATAINFORMATION| } ga700
7 83725 ! TO COMPUTER NODE ;
4 1 !
SEND PARITY SOURCE-DATA ; R—
INFORMATION TO P2 DRIVE ! CREATE P2 PARITY
(P_PUSH) : ! £ 83727 i
: | | Y UPDATE METADATA
: i -D AND D-P
CONVERSION TABLES)
S3728 4
END WRITE TO MEDIUM

Fig.37

U.S. Patent

Dec. 3, 2019

Sheet 38 of 45

US

WRITE PROCESSING 2 (CONCURRENT EXECUTION)

L~ 101

10,496,479 B2

3219

3220
N

COMPUTER NODE D DRIVE P1 DRIVE P2 DRIVE
START i : £
3701 ; |
RECEIV;RV(\)/&&L% g%QUEST W, v .
COMMAND DESCRIP-
T . NAME ARGUMENT |OUTPUT| M55
ACQUIRE ADDRESS :
IDENTIFIER FROMADDRESS {1/ D White2 ;;?§2\VE NUMBER NA A%%S{;'ggs
IDENTIFIER FREE QUEUE 3:TRANSFER IDENTIFIER
UPDATE HEAD PONTER OF | $3802 4 DRTLENGTH Nk
ADDRESS DRI IER IDENTIFIER DATA
¢ $3803 | ! |
ISSUE D_WRITE2 TO D DRIVE |/ : : !
WITHASSIGNMENT OF * : !
ADDRESS IDENTIFIER ; ;
v S3708 :
P WRITETOPIDRVE |/ : !
TOGETHER WITH DATA !
STORAGE INFORMATION |
+ - /S3713 |
o]
¥
STORAGE INFORMATION RECEIVE D_WRITE2 o/ S3109 153714
) A COMMAND RECEIVE hd /\/
: 83703 ¥ P_WRITE RECEIVE
; /A_WRITE TO MEDIUM | | COMMAND P_WRITE
: 3108 UPDATE &ETADATA SHT10LCAMAD
: M rLL $3715
‘ 83705 (L/P AND LOG T
: 0 CONVERSION TABLES) ‘%%;EETRO \ A4
! ¥ Si7y1| VRITETO
; §3706-1 RETURN RESULT 70 I BUFFER
3 COMPUTER NODE SETURN 3716
RECEIVE RESULT OF l RESULTTO N
— D_WRITE2 FROM i L
et Sy [[
' S30r COMPUTER
| | RECEIVERESULTOF |, : NODE
P_WRITE FROM P1 DRIVE {T < ;
: S3nz
RECEIVE RESULT OF 2
| P_WRITEFROM |e :
PADRVE Nigyrir

RECEIVE
RESULTS FROM
ALL DRIVES 2

| RETURN RESULT TO HOST |

Misartg

3
1
i
)
1
1
s
)
1
1
53804 |
3
1
1
4
3
)
i
q

U.S. Patent Dec. 3, 2019 Sheet 39 of 45 US 10,496,479 B2

OPERATION AT PARITY DEPLETION

FREE SPACE
DEPLETION 7

SEARCH FOR PARITIES
TO BE DELETED

S3903

1S IMMEDIATE
DELETION
AVAILABLE 7
53904
- AT NP2DRNE |
READ LATEST DATA USED TO e !
CREATE PARITY TO BE DELETED a : /\/33908 :
e 1 !
s '
N 83905 . : WRITE DATATO P2 DRIVE !
1
l '
WRITE DATATO P1 DRIVE 1 !
\ | s S3909 i
~ 1
S3906 -~ ! DELETE OLD P2 PARITY i
A~ L :
5| DELETE OLD P1 PARITY R e S S P
. S3907
DELETE OLD DATA {REPORT}

END

Fig.39

U.S. Patent Dec. 3, 2019 Sheet 40 of 45 US 10,496,479 B2

HOST 4001 HOST 4001

4002

L 4003 N
COMPUTER NODE 101 COMPUTER NODE 101

PARITY PARITY
CREATION UNIT 4006 CREATION UNiT 4008
4004
3101 —
A 7

¥
3102
BUFFER L

MEMORY
3103

N
INTERNAL
PROCESSOR

N

3104 FLASH
NAT MEMORY

FLASH DRIVE

/3105 STORAGE SYSTEM

Fig.40

U.S. Patent Dec. 3, 2019 Sheet 41 of 45 US 10,496,479 B2

101
N2 COMPUTER

......................
A

3204

3205 bl
4 Wl
D DRIVE P1 DRIVE P2 DRIVE D DRIVE
N N A MY
3219 3220 3221 319

Fig.41

U.S. Patent

Dec. 3, 2019

Sheet 42 of 45

LIST OF INTERFACES

US 10,496,479 B2

comﬁ/;wo ARGUMENT oUTPUT DESCRIPTION
D.WRITE _|1-DRIVE NUMBER 1:ADDRESS WRITE DATA AND
N 2'LBA IDENTIFIER RETURN ADDRESS
3 TRANSFER DATA IDENTIFIER
3401 {ENGTH
P WRITEZ |1:DRIVE NUMBER NIA WRITE PARITY
2LBA WITH INFORMATION
M 3. TRANSFER DATA ON SOURGE DATA
o1 LENGTH OF PARITY
4:PARITY SOURCE-DATA
INFORMATION]
4-1) DRIVE NUMBER
42)LBA
4.2) ADDRESS
IDENTIFIER
D_READ |1-DRIVE NUMBER N/A RETRIEVE LATEST
Py, 2:LBA DATA
2403 3: TRANSFER DATA
LENGTH
OLD.D_READ |1 DRIVE NUMBER N/A RETRIEVE OLD DATA
A 2 ADDRESS (FOR GARBAGE
3404 IDENTIFIER COLLECTION/
REBUILDING)
STAT GET |1:DRIVE NUMBER 1-USACE OF DRIVE | MONITOR FOR
M CAPACITY
e DEPLETION
INVALD _|1:DRIVE NUMBER NiA INVALIDATE LOG
2+ ADDRESS INFORMATION AND
~ IDENTIFIER DATAASSOCIATED
2408 WITH SPECIFIED
ADDRESS
IDENTIFIER
SEARCH _|1-DRIVE NUMBER 1-INFORMATIONON | SEARCH PARITY
PARITY TO BE STORAGE DRIVE
DELETED FOR PARITY TO BE
1) DRIVE NUMBER | DELETED AND
1-2) LBA ACQUIRE SOURCE
VY 2: SOURCE-DATA DATA INFORMATION
3409 INFORMATION ON | ON DETECTED
PARITY TO BE PARITY
DELETED|]

2-1) DRIVE NUMBER

2-2) LBA

2-3) ADDRESS
IDENTIFIER

2-4) INFORMATION
ON NEW OR OLD

Fig.42

U.S. Patent Dec. 3, 2019 Sheet 43 of 45 US 10,496,479 B2
WRITE PROCESSING
101 3219
COMPUTER NODE D DRIVE /\/
[sTaRT] S4301
» RECEIVE WRITE REQUEST
FROM HOST ! 54303
v | N
ISSUE D_WRITE > RECEIVE D WRITE
TO D DRIVE COMMAND
| 84304
$4302 : \
g WRITE TO MEDIUM
: 84305
E ¥ /\/
; UPDATE METADATA
E {L/P CONVERSION TABLE)
$4307 : 84306
N\ ; Y
RECEIVE RESULT OF < RETURNRESULTTO
S4308 D _WRITE FROM D DRIVE COMPUTER NODE
AN ¥ f
STORE DATATO PARITY ,
CREATION BUFFER :
$4309 ;
¥ :
RETURN RESULTTO HOST
A4 E
END f

Fig.43

U.S. Patent Dec. 3, 2019 Sheet 44 of 45 US 10,496,479 B2

WRITE PROCESSING (ASYNCHRONOUS DESTAGING)

4405
MAIN Y PARITY
CONTROLLER CREATION UNIT P1DRIVE P2 DRIVE
? R YN LW
START 4006 | 3220 L 3021
; S4403 :
TRANSFER DATATO L E 3
PARITY CREATION UNIT "L RECEIVE DATA_ | S0t |
; P S :
: STORE DATATO | :
| BUFFER ; !
| Y $4405 | |
! CREATE P1 PARITY ;
S4407 AND P2 PARITY ; ;
ANANE y $4406 |
RECEIVE PARITIES AND TRANSFER v | !
PARITY SOURCE-DATA [#~ PARITIES TO MAIN | !
INFORMATION CONTROLLER | :
84408\1\
WRITE PARITIES AND ! g g
PARITY SOURCE-DATA : :
INFORMATION (P WRITE2) OSM0NN | SMB |
| : RECEIVE P_WRITE2|| RECEIVE P_WRITE2
| ! COMMAND COMMAND
i oS0, SM |
| | WRITE TO MEDIUM || WRITE TO MEDIUM
: AN S4415\
| : UPDATE METADATA |[UPDATE METADATA
| ! P-DAND D-P P-D AND D-P
| : ONVERSION ONVERSION
| ! TABLES) TABLES)
| P SMI2\n S4416\ |
| ,i RETURN RESULT || RETURN RESULT
S4417 : ; I
AANIER | : :
| RECENERESULT | ! !

1
t
i
1
1
s

END

U.S. Patent Dec. 3, 2019 Sheet 45 of 45 US 10,496,479 B2

OPERATION AT PARITY DEPLETION

FREE SPACE

DEPLETION ? N
/\/84202
SEARCH FOR PARITIES TO BE DELETED
S4203
{S IMMEDIATE
DELETION AVAILABLE ?
/\/ S4204
READ LATEST DATAUSED TO
CREATE PARITY TO BE DELETED
S4501
\ /\/
STORE DATATO PARITY CREATION BUFFER
$4206
\ Y
> DELETE OLD PARITIES
S4207
~
DELETE OLD DATA (REPORT)
v
END

Fig.45

US 10,496,479 B2

1
DISTRIBUTED STORAGE SYSTEM

CLAIM OF PRIORITY

This application is a divisional application of U.S. appli-
cation Ser. No. 15/120,840, filed Aug. 23, 2016 which
claims priority from International Patent Application No.
PCT/IP2014/076105 filed on Sep. 30, 2014, the contents of
which are hereby incorporated by reference into this appli-
cation.

BACKGROUND

This invention relates to a distributed storage system.

The amount of data keeps increasing while IT investment
has leveled off. Cost saving in storage has become more
important. For example, a type of distributed storage sys-
tems, ServerSAN-type storage systenis, are expected to be
popular in the future. The ServerSAN-type storage system is
composed of a large number of general-use servers con-
nected by a network to create a storage pool. The ServerSAN
storage system could be an effective solution especially for
a system including server nodes equipped with high-speed
SSDs to conduct high spec analysis such as large-scale big
data analysis.

Background art of this technical field includes U.S. Pat.
No. 7,546,342 B2, which discloses: A relative importance
for each file associated with the web site is calculated. This
relative importance is used to calculate several subsets of the
content which are distributed to several devices within a
computer cluster, such as a server array, peer-to-peer net-
work, and the like. The subsets may include coded messages
created using an erasure coding scheme on packets contain-
ing portions of one or more files. Upon retrieving a file, a
fixed number of distinct coded messages are retrieved from
the devices based on the erasure coding scheme. The file is
re-created with these distinct messages. Because multiple
devices hold the content, the web site may be retrieved
significantly faster and the reliability is increased without
consuming a large amount of storage space or bandwidth of
any one computing device (Abstract).

CITATION LIST
U.S. Pat. No. 7,546,342 B2

SUMMARY

Traditional ServerSAN storage systems use local storage
devices directly connected with server nodes as a final
storage place and distribute write data and its redundant data
to a plurality of server nodes to protect data. Specifically, the
system divides write data from a host into a plurality of data
blocks, creates redundant codes from division blocks by
erasure coding, and distributes the division blocks and the
redundant codes equally to the plurality of server nodes.

In this way, traditional ServerSAN storage systems dis-
tribute write data received from a host to a plurality of server
nodes. Accordingly, when an application program reads data
from the ServerSAN storage, data blocks are transferred
through the network among the server nodes. Consequently,
the throughput of the network could become a bottleneck to
increase data access latency, compared to data read without
data transfer through a network.

A representative example of this invention is a distributed
storage system including: a plurality of nodes capable of
communicating with each other via a network; and a plu-

10

20

25

40

45

60

65

2

rality of storage devices, wherein a first node group includ-
ing at least three nodes is predefined in the plurality of
nodes, wherein each node of the first node group is config-
ured to send data blocks stored in storage devices managed
by the node to other nodes belonging to the first node group,
wherein a first node of the first node group is configured to
receive data blocks from two or more other nodes in the first
node group, wherein the first node is configured to create a
redundant code using a combination of data blocks received
from the two or more other nodes, wherein the first node is
configured to store the created redundant code to a storage
device different from storage devices holding the data blocks
used to create the redundant code, and wherein combina-
tions of data blocks used to create at least two redundant
codes in redundant codes created by the first node are
different in combination of logical addresses of constituent
data blocks.

An aspect of this invention achieves high capacity effi-
ciency and high reliability of a storage system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an outline of write processing in a
distributed storage system;

FIG. 2 illustrates an example of a mapping image of
multiple protection layers in the distributed storage system;

FIG. 3 illustrates an example of a system configuration of
the distributed storage system;

FIG. 4 illustrates information for controlling the distrib-
uted storage system;

FIG. 5A illustrates a configuration example of a virtual
volume management table;

FIG. 5B illustrates a configuration example of a pool
volume management table;

FIG. 5C illustrates a configuration example of a drive
management table;

FIG. 5D illustrates a configuration example of a drive
state management table;

FIG. 5E illustrates a configuration example of a node state
management table;

FIG. 5F illustrates a configuration example of a site state
management table;

FIG. 6A illustrates a configuration example of a page
mapping table;

FIG. 6B illustrates a configuration example of a page load
frequency table;

FIG. 6C illustrates a configuration example of a page load
distribution table;

FIG. 7A illustrates a configuration example of a site static
mapping table;

FIG. 7B illustrates a configuration example of a geo static
mapping table;

FIG. 7C illustrates a configuration example of a consistent
hashing table;

FIG. 8 illustrates a configuration example of a log-
structured mapping table;

FIG. 9 illustrates a configuration example of a local area
control table 214;

FIG. 10 illustrates an example of cache information;

FIG. 11 illustrates a mapping image of the site protection
layer;

FIG. 12A illustrates state transitions of a node in the
distributed storage system;

FIG. 12B illustrates state transitions of a site in the
distributed storage system;

US 10,496,479 B2

3

FIG. 13 illustrates an example of the logical configuration
of a virtual provisioning layer in a node of the distributed
storage system;

FIG. 14 illustrates an example of page mapping in a
plurality nodes in the distributed storage system;

FIG. 15 is a flowchart of read processing in the distributed
storage system;

FIG. 16 is a flowchart of synchronous write processing;

FIG. 17 is a flowchart of asynchronous write processing;

FIG. 18 is a flowchart of destage processing;

FIG. 19 is a flowchart of processing of capacity depletion
management;

FIG. 20 illustrates a concept of the processing of capacity
depletion management;

FIG. 21 is a flowchart of saving/rebuilding processing;

FIG. 22 is a flowchart of data resync processing;

FIG. 23 is a flowchart of reallocation processing and
rebalancing processing;

FIG. 24A illustrates an example of determining a local
threshold in the reallocation processing;

FIG. 24B illustrates an example of determining a local
threshold in the reallocation processing;

FIG. 25A is a flowchart of configuration change process-
ng;

FIG. 25B illustrates an example of adding a stripe type
and reallocating stripes when a node is added,

FIG. 26 illustrates an example of a management I/F for a
command line;

FIG. 27 illustrates an example of a management I/F for a
GUI in the distributed storage system;

FIG. 28 illustrates an example of hardware configuration
of a distributed storage system;

FIG. 29 illustrates a technique for improving efficiency in
data transfer among nodes to implement redundancy in
Embodiment 2;

FIG. 30 illustrates a data restoration method in the tech-
nique for improving efficiency in data transfer among nodes
to implement redundancy in Embodiment 2 described with
reference to FIG. 29;

FIG. 31 illustrates an example of a hardware configura-
tion of a distributed storage system in Embodiment 3;

FIG. 32 illustrates an overview of Embodiment 3;

FIG. 33 illustrates structures of tables managed by a drive
to control the storage system in Embodiment 3;

FIG. 34 is a list of communication interfaces between a
computer node and a flash drive in Embodiment 3;

FIG. 35 is a flowchart of read processing for a computer
node to retrieve latest data from a D drive in Embodiment 3;

FIG. 36 illustrates read processing to retrieve old data in
Embodiment 3;

FIG. 37 is a flowchart of write processing for a computer
node to write data to a D drive in Embodiment 3;

FIG. 38 is a flowchart of processing to concurrently
execute data writes to drives in the synchronous write
processing in Embodiment 3;

FIG. 39 is a flowchart of garbage collection processing in
Embodiment 3;

FIG. 40 illustrates an example of a hardware configura-
tion of a distributed storage system in Embodiment 4;

FIG. 41 illustrates an overview of Embodiment 4;

FIG. 42 is a list of communication interfaces between a
computer node and a drive in Embodiment 4;

FIG. 43 is a flowchart of synchronous write processing in
Embodiment 4;

FIG. 44 is a flowchart of asynchronous write processing
in Embodiment 4; and

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 45 is a flowchart of garbage collection processing in
Embodiment 4.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

Embodiments of this invention are described with refer-
ence to the drawings. It should be noted that the embodi-
ments described hereinafter are not to limit the invention
according to the claims and that not all the combinations of
the features described in the embodiments are indispensable
for the solving means of the invention.

In the following description, information may be
described with the terms such as table, list, and queue;
however, the information may be expressed in data struc-
tures other than these. To imply independency from the data
structure, “xx table™, “xx list”, or the like may be referred to
as “xx information”. In describing specifics of the informa-
tion, terms such as identification information, identifier,
name, 1D, and number are used; they may be replaced with
one another.

Embodiment 1
Overview

This embodiment discloses distributed storage systenis.
The distributed storage systems are composed of computer
nodes each including a storage device and connected by a
network. The distributed storage systems provide a virtual
storage system implementing a storage pool with the storage
devices of the computer nodes.

In an example of a distributed storage system, a computer
node stores write data of a host to its local storage device,
and further transfers the write data to another computer node
to protect the data in case of a failure of the computer node.
The other computer node is referred to as transfer destina-
tion computer node.

The transfer destination node creates a redundant code
from write data transferred from a plurality of different
computer nodes. The transfer destination computer node
stores the created redundant code to its local storage device.

Placing the data preferably to the node that has received
a write request eliminates communications among nodes in
reading the data to allow speedy reading. In the meanwhile,
creating a redundant code among computer nodes at a node
different from the nodes that have received write requests
achieves data protection with small overhead. Particularly in
constructing a distributed storage system with a large num-
ber of nodes with low reliability, the configuration of this
invention is effective that guarantees redundancy while
maintaining the read performance.

Furthermore, particularly in running an analytical appli-
cation in the distributed storage system of this invention,
each computer node will probably hold most of the data the
computer should analyze in its local storage area. This
configuration achieves shorter loading time for data analy-
sis, improving business agility and saving the storage cost.

In an example, a distributed storage system provides a
virtual volume to a host. The distributed storage system
allocates a logical page from a pool volume to a virtual page
that has received a write access. The pool volume is a logical
volume; the logical storage area of the pool volume is
allocated physical storage areas of storage devices.

A computer node selects virtual pages where to allocate
logical pages from its local storage device based on the
network bandwidth of the distributed storage system and the

US 10,496,479 B2

5

access frequencies from the host to individual virtual pages
of the computer node. For example, the computer node
determines a threshold based on the network bandwidth of
the distributed storage system and places the logical pages
accessed more frequently than the threshold to its local
storage device. As a result, speedily accessible page alloca-
tion is attained while eliminating a network bottleneck.

In an example, a computer node has an interface for an
application program or a user to designate the location of a
virtual page. A virtual page is designated with, for example,
a logical address related to the virtual volume including the
virtual page. The location of a virtual page is indicated with
the computer node that holds the data of the virtual page.
The interface for designating the location of a virtual page
enables page allocation optimized for the user of the virtual
pages.

In this embodiment, the distributed storage system can
include all the aforementioned plurality of configuration
examples but may include part of the configurations.

Description of Terms

In this disclosure, storage device includes a single storage
drive such as an HDD or an SSD, a RAID apparatus
including a plurality of storage drives, and a plurality of
RAID apparatuses. Stripe of or stripe data is a data unit to
be a basis of creating a redundant code for data protection.
The stripe may be referred to as user data to distinguish from
a redundant code. The stripe is stored in a storage device in
a computer node and further used in creating a redundant
code in another computer node.

Stripe type is a class of stripes for creating a redundant
code. The stripe type to which a stripe belongs is determined
by, for example, the logical address of the stripe and the
computer node holding the stripe. A stripe type number or an
identifier of a stripe type indicates a group of associated
computer nodes. One stripe can belong to stripe types in
different protection layers. Host is a computer that accesses
a storage system, the processor operating in the computer, or
a program executed by the processor.

FIG. 1 illustrates an outline of write processing in the
distributed storage system as an example of this embodi-
ment. Computer nodes 101A, 101B, and 101C are included
in a single computer domain (hereinafter, also referred to as
domain). In the example described hereinafter, a domain is
associated with a site. Computer nodes 101D and 101E are
each located in a site different from the other computer
nodes. The computer nodes 101A to 101E communicate
with one another via a network. Hereinafter, a computer
node may be simply referred to as node.

Bach of the computer nodes 101A to 101E includes a
cache 181 and storage drives 113. Each of the nodes 101A
to 101E provides a volume 1303.

The node 101A stores write data DATAl (1501A)
received from a host to the local cache 181 and further stores
it to its local storage drives 113. The write data DATA1 is a
stripe.

The node 101A creates a node redundant code P from the
write data DATA1 and stores it to its local storage drive 113.
The node redundant code is a redundant code created from
data units stored in its local storage device and denoted by
a reference sign P. The node 101A transfers write data
DATALI in its local cache 181 to the cache 181 of another
node 101B.

The node 101C stores write data DATA2 (1501B)
received from an external apparatus to its local cache 181
and further stores it to its local storage drives 113. The write

20

25

40

45

50

60

65

6

data DATA?2 is a stripe. The node 101C creates a node
redundant code P from the write data DATA2 and stores it
to its local storage drive 113. The node 101C transfers the
write data DATA2 in its local cache 181 to the cache 181 of
another node 101B.

The node 101B creates a site redundant code Q (1502B)
from the DATA1 and DATA?2 stored in its local cache 181
and stores it to its local storage drives 113 to protect the data
in case of a failure of the computer node. The site redundant
code is a redundant code among the nodes in a site and
denoted by a reference sign Q. The site redundant code Q
belongs to a protection layer different from the protection
layer the node redundant code P belongs to.

The node 101C stores write data DATA3 (1501C)
received from a host to its local cache 181 and further stores
it to its local storage drives 113. The write data DATA3 is a
stripe. The node 101E creates a node redundant code P from
the write data DATA3 and stores it to its local storage drive
113.

The node 101A transfers the write data DATA1 in its local
cache 181 to the cache 181 of another node 101D. The node
101E transfers the write data DATA3 in its local cache 181
to the cache 181 of another node 101D.

The node 101D creates a geo redundant code R (1502C)
from the DATA1 and DATAS3 stored in its local cache 181
and stores it to its local storage drives 113 to protect the data
in case of a failure of the computer node. The geo redundant
code is a redundant code among nodes in different sites and
denoted by a reference sign R. The geo redundant code R
belongs to a protection layer different from the protection
layers the node redundant code P and the site redundant code
Q belong to.

FIG. 2 illustrates an example of a mapping image of
multiple protection layers in the distributed storage system.
FIG. 2 depicts an image to implement redundancy among
the nodes in the same site and among the sites together. For
example, first redundancy is implemented among the nodes
in a data center and further, redundancy with a different site
1s implemented to protect data in multiple layers, so that the
reliability of the system can be improved. In FIG. 2, only a
part of the elements are denoted by reference signs and the
reference signs of the same kinds of elements are partially
omitted. In FIG. 2, each square pole represents a node; each
broken-lined rectangle represents a site (domain); each
rectangle in a node represents a stripe or the address of the
stripe (date location).

FIG. 2 shows four sites 102 and each site includes four
nodes. FIG. 2 does not show redundant codes created from
multiple stripes.

The combination of a numeral X and a letter Y (X_Y) in
each stripe 1003 represents an identifier of the stripe type the
stripe 1003 belongs to, where X represents an identifier of an
inter-node stripe type in the site (site stripe type) and Y
represents an identifier of an inter-site stripe type (geo stripe
type).

One stripe 1003 belongs to one site stripe type and one
geo stripe type. For example, the stripe 1_A stored in the
node 101A1 belongs to the site stripe type 1001 and the geo
stripe type 1002.

The stripes belonging to the site stripe type 1001 are the
stripe 1_A in the node 101A1, the stripe 1_D in the node
101A2, and the stripe 1_C in the node 101A3. The node
101A4 which does not hold these stripes creates and holds
the redundant code of these stripes.

The stripes belonging to the geo-stripe type 1002 are the
stripe 1_A in the node 101A1, the stripe 1_A in the node
101B1, and the stripe 2_A in the node 101C2. The node

US 10,496,479 B2

7
101D4 located in the site different from these creates and
holds the redundant code of these stripes.

In the above-described configuration, each node transfers
each stripe (data unit) received and held by the node to a
transfer destination node; the transfer destination node cre-
ates a redundant code from the transferred data units and
holds it. The stripes and their redundant code are stored in
different nodes to achieve data protection against a node
failure.

The node that has received a host command sends the
received write data to another node without retrieving old
data to create a site redundant code or a geo redundant code.
Accordingly, performance in responding to a write com-
mand improves. Further, a stripe is transferred from a cache
to cache to create a redundant code and the drives 113 do not
intervene in the transfer; accordingly, if the drives 113 are
flash media, less frequent write operations can save their
lives.

Since the node stores a stripe received from a host to its
local storage device without dividing it, shorter response
time and less network traffic are achieved in reading the
stripe. Further, the redundant code does not need to be
transferred, which achieves less network traffic.

Furthermore, since one stripe belongs to multiple protec-
tion layers, the above-described configuration can attain
higher fault tolerance of the system. It should be noted that
the distributed storage system may be configured with a
single protection layer in which only an inter-node redun-
dant code in a site or among sites is created.

FIG. 3 illustrates an example of a system configuration of
the distributed storage system. Each node 101 may have a
configuration of a common server computer. The hardware
configuration of the node 101 is not specifically limited. A
node 101 and other nodes 101 are connected by a network
103 through their own ports 106. The network 103 is
configured with, for example, InfiniBand or Ethernet.

These plurality of nodes 101 form a domain 102. The
domain 102 may be associated with a geographical area or
the virtual or physical topology of the network 103. A
network 104 connects a plurality of domains 102. In the
following, the domains are assumed to be associated with
geographically distant sites.

As to the internal configuration of each node 101, a port
106, a processor package 111, disk drives (hereinafter, also
referred to as drives) 113 are connected by an internal
network 112. The processor package 111 includes a memory
118 and a processor 119.

The memory 118 stores control information required for
the processor 119 to process read and write commands and
1o implement storage functions and also stores cache data for
the storage. The memory 118 further stores programs
executed by the processor 119. The memory 118 may be a
volatile DRAM or a non-volatile SCM (Storage Class
Memory).

The drives 113 are configured with hard disk drives and
SSDs (Solid State Drives) having an interface of, for
example, FC (Fibre Channel), SAS (Serial Attached SCSI),
or SATA (Serial Advanced Technology Attachment).

The drives 113 may be SCMs such as NAND, PRAM, and
ReRAM, or otherwise volatile memories. In the case of
using volatile memories, the storage device may be non-
volatilized with a battery.

The aforementioned various kinds of drives have different
capabilities. For example, SSDs are superior to HDDs in
throughput capability. The node 101 includes different kinds
of drives 113. The node 101 in this embodiment classifies

20

25

30

40

45

55

60

65

8

different kinds of drives into groups of drives having similar
capabilities to form tiers 115 and 116.

The relationship of tiers is defined in accordance with the
capabilities of the tiers. The capabilities include access
capability and fault tolerance capability. In the example
described below, the access capabilities of the tiers go down
from TIER1, TIER2 to TIER3 in this order. In the example
described below, the drives in each tier are configured as a
RAID. Although the number of tiers illustrated in FIG. 3 is
two, the number of tiers depends on the design. A tier having
high access capability may be used as a cache. A drive, a
RAID, a tier, and groups of these are each a storage device.

FIG. 4 illustrates information for controlling the distrib-
uted storage system. The memory 118 stores programs
including a storage program for implementing storage func-
tions, an OS, and an interface program, in addition to the
information shown in FIG. 4. The memory 118 may further
store an application program for performing a service.

Protection layer information 201 is information related to
data protection. Virtualized provisioning information 202 is
information related to provisioning virtual volumes. Cache
information 204 is information related to the cache 181.
Configuration information 203 is information related to the
configuration of the distributed storage system.

The protection layer information 201 includes static map-
ping tables 210, 211, and 212 for protection layer #I,
protection layer #2, and protection layer #3, respectively.
The protection layer information 201 further includes a
log-structured mapping table 213 and a local area control
table 214.

The virtualized provisioning information 202 includes a
page mapping table 215, a page load frequency table 216,
and a page load distribution table 217. The configuration
information 203 includes a virtual volume management
table 218, a pool volume management table 219, and a drive
management table 220. The configuration information 203
further includes a drive state management table 221, a node
state management table 222, and a site state management
table 223.

A copy of all or part of the aforementioned information
may be synchronously or asynchronously stored to the
drives 113. Each node 101 may store the information for
each pool. A pool is composed of one or more logical
volumes. This logical volume is also referred to as pool
volume. A pool has one or more tiers. In the example
described below, a pool has three tiers. That is to say, a pool
is composed of pool volumes of three tiers. The substance of
a pool volume is storage areas of the drives 113. A pool
volume can be allocated storage areas of drives of other
nodes 101.

Hereinafter, examples of configurations of the tables
indicating the information held by each node 101 are
described. Fach table shows only a part of the entries. In
each table, the blank cells represent cells in which indication
of data 1s omitted. In the cells of the tables, “0x” represents
a hexadecimal number. Drive numbers are unique to a node
and node numbers are unique to a site. Site numbers are
unique to the system.

FIGS. 5A 1o 5F illustrate configuration examples of the
tables indicating information included in the configuration
information 203. FIGS. 5A to 5C indicate management
information on different kinds of storage resources. FIG. 5A
illustrates a configuration example of the virtual volume
management table 218. The virtual volume management
table 218 indicates information on virtual volumes.

In this example, the virtual volume management table 218
indicates information on the virtual volumes provided by the

US 10,496,479 B2

9

node 101 holding this information 218. The node 101
receives accesses to the virtual volumes the node 101
provides. The virtual volume management table 218 may
hold information on the virtual volumes that are not owned
by the node in case of occurrence of a failure.

The virtual volume management table 218 includes the
size (capacity) of each virtual volume and a list of node
numbers of the nodes (owner nodes) providing each virtual
volume. Furthermore, it includes information indicating
whether writing redundant codes in individual protection
layers to the local storage device are synchronous or asyn-
chronous with creating and writing the redundant codes. The
size of a virtual volume is not the total size of the allocated
logical pages but the virtual capacity (maximum size) of the
virtual volume. The information indicating synchronous/
asynchronous is provided for each protection layer.

FIG. 5B illustrates a configuration example of the pool
volume management table 219. The pool volume manage-
ment table 219 indicates information on pool volumes. In
this example, the pool volume management table 219 indi-
cates information on the pool volumes provided by the node
101 holding the information 219 and other nodes 101 in the
pools the node 101 holding the information 219 belongs to.
The pool volume management table 219 includes informa-
tion on the size (capacity) of each pool volume and the node
number of the node providing each pool volume.

FIG. 5C illustrates a configuration example of the drive
management table 220. The drive management table 220
indicates the drives allocated to each pool volume. In this
example, the drive management table 220 indicates infor-
mation on the local drives 113 included in the node 101
holding the information 220.

The drive management table 220 includes information on
the type of drives (such as SSD or NL-SAS drive), a set of
numbers of striping drives (a set of drive numbers config-
ured as a RAID group), and the sizes of the drives for each
pool volume. If striping is not employed, a pool volume is
allocated only one drive. It should be noted that different
areas of one drive can be allocated to different pool volumes.

FIGS. 8D to 5F indicate management information on
failures in the distributed storage system. The information is
held by each node 101.

FIG. 5D illustrates a configuration example of the drive
state management table 221. The drive state management
table 221 indicates the states and error counts of individual
local drives 113 in the node 101.

FIG. 5E illustrates a configuration example of the node
state management table 222. The node state management
table 222 indicates the states and error counts of the other
nodes 101 in the local site 102. The local site 102 of a node
101 is the site 102 to which the node 101 belongs to. When
the node 101 detects an error in communication with another
node 101, it increments the error count.

FIG. 5F illustrates a configuration example of the site
state management table 223. The site state management
table 223 indicates the states and error counts of individual
sites. This example is based on an assumption that the node
101 can communicate with only the representative nodes of
the other sites 102. Accordingly, an error at a representative
node 101 means the error in the site.

When the processor 119 of a node 101 detects an error in
communications with the local drives 113 and other nodes
101, it increments error counts in the management informa-
tion 221 to 223 of the node 101.

When the error count of some hardware resource (a drive,
a node, or a site) reaches a first threshold, the processor 119
changes the state of the resource from a normal state to a

20

25

40

45

60

65

10

warning state. Furthermore, when the error count reaches a
second threshold, the processor 119 changes the state of the
resource from the warning state to a failure state. The
warning state and the failure state are abnormal states.

When a node 101 detects an abnormal state of some
hardware resource, it notifies the other nodes 101 of the
information. Specifically, the node 101 notifies all other
nodes 101 in the local site 102 and the representative nodes
101 in the other sites 102. Each representative node 101
notifies the other nodes in the site 102 of the information. As
a result, information on the hardware resource in the abnor-
mal state can be shared among the nodes. Information on a
drive in an abnormal state does not need to be shared among
the nodes.

The nodes 101 may share the information on error counts.
For example, when a node 101 detects an error in commu-
nications with another node or another site, it updates its
own management information and broadcasts the updated
information to the other nodes 101. A node 101 may
determine a state based on the error counts in the other nodes
101 in addition to the error count in the node.

In the configuration where a node 101 communicates with
the individual nodes 101 in the other sites 102, the node 101
may count the errors in communications with the nodes 101
in the other sites 102. The error count of a site may be the
total sum of the error counts of all nodes in the site 102.

FIGS. 6A to 6C illustrate information included in the
virtualized provisioning information 202. FIG. 6A illustrates
a configuration example of the page mapping table 215. The
page mapping table 215 holds correspondence relations
between virtual pages in the virtual volumes and logical
pages in the pool volumes.

In this example, the page mapping table 215 holds infor-
mation on the virtual volumes provided by the node 101
holding the information 215. A virtual page may be allocated
directly or indirectly through a later-described local pool
volume 1303C to a logical page of a pool volume 1303B in
a remote node 101. The page mapping table 215 indicates
the relations between virtual pages and local pool volumes
1303C or pool volumes 1303B in the remote nodes.

The page mapping table 215 holds the start LBA (Logical
Block Address) and the address range of the virtual page and
the start LBA of the logical page of a pool volume corre-
sponding to the start LBA of the virtual page, for each virtual
page in individual virtual volumes.

FIG. 6B illustrates a configuration example of the page
load frequency table 216. The page load frequency table 216
holds records of I/O frequency (access frequency) to virtual
pages. Specifically, the page load frequency table 216 holds
the start LBA and the address range of the virtual page and
the access frequency to the area, for each virtual page in
individual virtual volumes.

The page load frequency table 216 holds information on
each virtual page allocated a logical page for storing user
data (write data) from a pool volume. Accordingly, the page
load frequency table 216 indicates the access frequencies to
the logical pages allocated to the virtual pages. The page
load frequency table 216 holds information on the virtual
volumes provided by the node 101 holding the table 216.
Furthermore, the page load frequency table 216 holds infor-
mation on the accesses the node holding the table 216
receives from the same node or other nodes.

The information on access frequency may be acquired and
managed by access source or may be acquired and managed
separately depending on whether the access is a read access
or a write access. The node 101 may acquire and manage the
information on access frequency separately depending on

US 10,496,479 B2

11

whether the access is a sequential access or a random access,
or may acquire and manage the information on access
frequency with multiple time frames of monitoring periods.

FIG. 6C illustrates a configuration example of the page
load distribution table 217. The page load distribution table
217 classifies the access frequencies of individual virtual
pages into a plurality of levels and indicates a page amount
for each level. That is to say, the page load distribution table
217 indicates distribution of page amounts to the levels of
access frequency (1/0 frequency). The page load distribution
table 217 indicates the records of page load distribution.

Each node 101 holds page load distribution tables 217 for
individual protection layers. Alternatively, one page load
distribution table 217 may hold information on access
frequencies to individual pages in the node, information on
access frequencies to individual pages in all nodes in the
site, and information on access frequencies to individual
pages in all nodes in the plurality of sites in the system. The
node 101 can create the page load distribution table 217
from the page load frequency tables 216 acquired from the
same node or other nodes.

In an example where a plurality of nodes 101 provide one
virtual volume, the plurality nodes 101 each receive an
access to a same single virtual page. Accordingly, the total
sum of the accesses to the single virtual page in all the owner
nodes of the virtual volume represents all the accesses to the
virtual page.

The page load distribution table 217 has a smaller amount
of information compared to the page load frequency table
216 and basically does not depend on the storage capacity
(the logical page amount) in the node 101. Accordingly, the
page load distribution table 217 can be shared among a large
number of nodes 101. Furthermore, the page load distribu-
tion information among the plurality of nodes 101, such as
page load distribution information on the entire site or the
entire system, can be created by adding the number of pages
in the plurality of nodes 101 to each access frequency level.
The page load distribution table 217 may be created by
access source node 101.

The page load frequency table 216 is effective to be
configured with two kinds of lists: a high-ranking list
including more frequently accessed (high loaded) pages
(using Lossy Count method, for example) and a list of access
frequencies by storage area sections (page loads) obtained
by dividing the storage area of a node or nodes by a specific
number. In the case of only the high-ranking list of high-
loaded pages, if the random loading range is wide as
commonly observed in OLTP databases, the high-ranking
list is saturated so that the pages to be included in the list
cannot be included.

On the other hand, in the case of only the page load list
by storage area sections, if the number of storage area
sections is small because of the limitation to the memory, the
section is so wide that the loads to the pages are leveled,
even though a specific page is especially loaded high; the
distinctions of the loads to the individual pages might be
lost. Accordingly, it is effective to have these two kinds of
lists together.

The node 101 may have history tables 216 and 217 by
specific period (for example, one week). Although this
example provides description based on the mapping table in
a block storage (managed by LBA), the node 101 can have
similar information with a commonly known file storage
(such as NFS/CIFS: Network File System/Common Internet
File System) or object storage (such as REST: Representa-
tion State Transfer).

20

25

40

45

60

65

12

In the file storage, management information may associ-
ate a page with a file or a small area obtained by dividing a
file. In the object storage, management information may
associate a page with an object or a small area obtained by
dividing an object.

FIGS. 7A to 7C illustrate examples of static mapping
tables in the protection layer information 201. Protection
Layer number 1 is a protection layer in a node 101; each
node 101 holds a node static mapping table 210 of the node
101. The drawing of the node static mapping table 210 is
omitted. The tables of FIGS. 7A to 7C are held by, for
example, a node 101 belonging to a site number 0 and
having a node number 0.

FIG. 7A illustrates a configuration example of the static
mapping table 211 of the protection layer number 2 (site).
The site static mapping table 211 is information shared by
the nodes 101 in a site 102. The site static mapping table 211
holds relations of each site stripe type number with the node
numbers of data nodes for storing corresponding stripes
(user data/write data) and the node numbers of redundant
code nodes for storing redundant codes created from the
stripes.

A site stripe type number is identification information for
a stripe type in a site. The stripe type is a class of stripes; one
or more redundant codes are created from a plurality of
stripes in a stripe type. A stripe is a data unit having a
predetermined size.

The method of determining the stripe type a stripe should
belong to and the method of creating a redundant code will
be described later. The stripe type number also represents a
group of nodes 101 storing the user data and redundant
codes included in the stripe type.

A redundant code is created from a plurality of stripes
included in different data nodes belonging to a site stripe. In
the example of FIG. 7A, two redundant codes are created
and they are stored in different nodes 101. The number of
redundant codes depends on the design. The plurality of
redundant codes are created by, for example, erasure coding.
The site static mapping table 211 may be shared among the
sites, unless the memory or security is restricted.

In this example, one stripe belongs to a single site stripe
type. As illustrated in FIG. 7A, the stripes stored in a node
can belong to different stripe types. For example, in the
example of FIG. 7A, a stripe stored in the node 0x00 belongs
to a site stripe type 0x0000 and another stripe in the node
0x00 belongs to a site stripe type 0x0001.

FIGS. 7B and 7C illustrate configuration examples of a
geo static mapping table 212A and a consistent hashing table
212B included in the static mapping table 212 for the
protection layer number 3 (geo). The geo static mapping
table 212A basically has the same configuration as the site
static mapping table 211. The geo static mapping table 212A
is shared among the sites.

The geo static mapping table 212A holds relations of each
geo stripe type number with the site numbers of data sites
allocated corresponding stripes and the site numbers of
redundant code sites allocated redundant codes. One node
101 in each data site stores a stripe. One node 101 in each
redundant code site stores a redundant code.

The consistent hashing table 212B indicates information
for identifying a node 101 storing a redundant code in a
redundant code site. Each site 102 holds a unique consistent
hashing table 212B. The information in the consistent hash-
ing table 212 is different among the sites.

The consistent hashing table 212B indicates relations of
the node number of each node 101 in a redundant code site
with the hash value in the case where the node 101 stores a

US 10,496,479 B2

13

redundant code (1) and the hash value in the case where the
node 101 stores a redundant code (2). The hash value is
calculated based on information on the transfer source
transferred from another site 102 together with a stripe. The
stripe is transferred to the node 101 associated with the
calculated hash value and the destination node 101 creates
and stores a redundant code.

The static mapping tables described with FIGS. 7A to 7C
are changed when the place to store the user data (stripe) and
the redundant codes are changed into a spare area at a failure
of the nodefsite. They are also changed at increasing/
decreasing a node or site.

The nodes 101 may share the same computing logic to
uniquely change the static mapping tables with the infor-
mation on the failed node/site. As a result, a node 101 does
not need to multicast the static mapping tables after chang-
ing its own static mapping tables, achieving lower load to
the network.

Predefining the nodes belonging to each stripe type with
the static mapping tables achieves a redundant configuration
appropriate for data recovery. Including data in a node into
different stripe types and defining the number of stripe types
the node belongs to increase the possibility of data recovery
at a failure of the node. The method of using the site static
mapping table 211 will be described later with reference to
FIG. 11.

FIG. 8 illustrates a configuration example of the log-
structured mapping table 213 in the protection layer infor-
mation 201. In FIG. 8, the arrows represent pointers. The
log-structured mapping table 213 includes a data mapping
table 701, a redundant code mapping table 702, and a reverse
mapping table 703.

The data mapping table 701 manages user data (stripes)
that the node 101 holding the table 701 stores in its local
storage device (drives 113). The node 101 can acquire the
storage address (physical address) in the drives 113 (physi-
cal storage device) of a stripe from a pool volume-related
storage address (logical address) of the stripe.

The data mapping table 701 associates the storage address
(logical address) in the pool volume of user data (stripe) with
the corresponding storage address (physical address) in the
physical storage area of the drives 113.

The pool volume-related storage address of a stripe is
specified with the LDEV number of the pool volume and the
stripe number of the stripe, and further, each block of the
stripe is specified with an LBA offset. The sizes of the stripes
are uniform. A stripe number is calculated with, for example,
a floor (LBA/Stripe Length). The storage address in the
physical storage area is specified with a drive number, an
LBA, and a data length.

In the example of FIG. 8, one stripe is separated and
stored in two physical areas (blocks). The data mapping
table 701 indicates that the data of an LDEV number 0, a
stripe number 0, and an in-stripe LBA offset 0 is stored in an
area of a drive number 0x43, an LBA 0x0003, and a data
length 8. Furthermore, the data mapping table 701 indicates
that the data of an LDEV number 0, a stripe number 0, and
an in-stripe LBA offset 1 is stored in an area of a drive
number 0x42, an LBA 0x0007, and a data length 8.

The physical storage area further stores information indi-
cating the state of the stored data. The state information
indicates whether the data has been copied (transferred) to
the associated redundant code node. As will be described
later, write data (a stripe) is transferred to the redundant code
node for creation of a redundant code synchronously or
asynchronously with host write of the write data (stripe) in
accordance with the setting of SYNC/ASYNC.

10

15

20

25

30

35

40

45

50

55

60

65

14

The redundant code mapping table 702 manages redun-
dant codes the node 101 holding the table 702 stores in its
local storage device (drives 113). The redundant codes to be
managed include inter-site redundant codes (geo redundant
codes R), in-site redundant codes (site redundant codes Q),
and in-node redundant codes (node redundant codes P). The
node 101 can acquire the physical address of the redundant
code of a stripe from the pool volume-related logical address
of the stripe.

The redundant code mapping table 702 associates the pool
volume-related logical addresses of the stripes used to create
a redundant code with a physical address of the redundant
code in a physical storage area of the local drives 113 (local
storage device). A redundant code is created by operations
(for example, xor) on a plurality of stripes. Accordingly, the
physical address of a redundant code is associated with
logical addresses of a plurality of stripes.

FIG. 8 illustrates an example that creates one redundant
code from two stripes. In the example of FIG. 8, the
redundant code mapping table 702 indicates a relation
between the physical address of one geo redundant code and
the logical addresses of two stripes used to create the geo
redundant code. The logical address of a stripe is indicated
by the identifiers of a site, node, and a pool volume and an
address in the volume. The geo redundant code is separated
and stored in two address areas (blocks) in the physical
storage area.

For example, a block of a geo redundant code created
from a block of the site number 4, node number 3, LDEV
number 7, stripe number 8, and LBA offset 0 and a block of
the site number 6, node number 5, LDEV number 4, stripe
number 13, and LBA offSet 0 is stored in the area of the drive
number 0x40, LBA 0x0020, and data length 8.

The distributed storage system in this example stores data
in accordance with log-structured scheme. In updating data
at a logical address with new data, the log-structured scheme
updates data at a physical address by adding new data to a
new physical address instead of replacing the data with new
data. Unnecessary data is deleted as appropriate. The log-
structured scheme does not require data retrieval to update
a node redundant code P, achieving reduction in time to
write to the drives 113. The distributed storage system does
not need to implement the log-structured scheme.

Accordingly, for data at a logical address, old data and
new data can be stored in physical storage areas. The
log-structured mapping table 213 holds information on
relations of logical addresses with physical addresses of the
latest data, and in addition, information on relations of
logical addresses with physical addresses of old data and
management information on generations of data. Manage-
ment information on generations of a redundant code created
from a plurality of stripes indicates information on genera-
tions of the stripes used to create the redundant code.

The data mapping table 701 and the redundant code
mapping table 702 may further include data guarantee codes
(such as write sequence numbers and CRCs). This informa-
tion enables checking data integrity by referring to the
information in the mapping table only once at address
conversion.

The reverse mapping table 703 is a reverse conversion
table of the above-described tables 701 and 702. That is to
say, the reverse mapping table is referred to in order to
convert an address of a physical area into a pool volume-
related address. The reverse mapping table 703 includes
tables 732 indicating logical addresses corresponding to
individual address areas 731 holding data in the physical
area.

US 10,496,479 B2

15

Each of the tables 732 includes a type of data (stripe/geo
code/site code/node code), the number of indices (the num-
ber of references), an update time, and references (each
including information on the corresponding area in a pool
volume, a site number, a node number, and the like).

For example, FIG. 8 shows information on logical
addresses associated with a physical address storing a geo
redundant code by way of example. This example corre-
sponds to the example of the geo code mapping table 702 in
FIG. 8. The data type is geo redundant code and the number
of indices is 2. This means two stripes are used to create the
geo redundant code.

Each reference indicates the logical address storing a
stripe used to create the geo redundant code. The logical
address is indicated by a site number, a node number, an
LDEV number, a stripe number, and an LBA offset.

As described above, managing the addresses of the trans-
fer sources of the stripes to create a redundant code in
association with the physical address of the redundant code
enables appropriate management of redundant codes of
various combinations of stripes.

Ifthe drives 113 include non-volatile media, the node may
add update information to the reverse mapping table 703
synchronously with writing user data to the drives. This
arrangement enables data recovery at an accidental power
down. Alternatively, the node 101 may store the update
information in the memory 118 and update the reverse
mapping table 703 in the drives 113 asynchronously with
writing user data to the drives. To enable data recovery at an
accidental power down, the reverse mapping table 703 may
hold write sequence numbers. The reverse mapping table
703 may hold information on old data in addition to infor-
mation on the latest data.

FIG. 9 illustrates a configuration example of the local area
control table 214. In FIG. 9, arrows represent pointers. The
local area control table 214 includes a valid list 801A, an
invalid list 801B, a free list 801C, and a local area amount
table 802. The local area control table 214 manages the areas
of the drives 113 in a node 101. The arrows in the lists 801A
to 801C represent pointers. In the lists 801A to 801C, each
area is indicated with a drive number and an LBA in the
drive.

The valid list 801A is a list of valid areas. A valid area is
an area storing latest user data or a latest redundant code. In
the example of F1G. 9, the blocks at LBAs 0, 4, and 5 in the
drive 113 of a drive number 0 each store valid data.

The invalid list 801B is a list of invalid areas. An invalid
area is an area for storing old user data or an old redundant
code. An old and invalid redundant code is a redundant code
for which all the stripes used to create the redundant code are
invalid. In the example of FIG. 9, the blocks at LBAs 1, 3,
and 7 in the drive 113 of a drive number 0 each store invalid
data. The free list 801C is a list of unused areas.

The local area amount table 802 manages the target
amounts of area to use, the amounts of area actually in use,
and the amounts of valid area for the individual stripe types,
the node redundant codes, the site redundant codes, the geo
redundant codes, and the spare area. Each node 101 holds
the local area amount table 802 for each tier. Each entry of
the local area amount table 802 may indicate the total
amount of all tiers. Separately managing the amounts for the
stripe types and redundant codes enables appropriate control
of the amounts for the individual types of data. The proces-
sor 119 updates the local area control table 214 synchro-
nously or asynchronously with a host I/O.

For example, the local area amount table 802 holds entries
of only the stripe types the node 101 belongs to. Alterna-

20

25

40

45

60

65

16

tively, the local area amount table 802 may include entries
for the data of stripe types the node 101 does not belong to
in order to manage the amount of area used for the data
transferred from other nodes 101.

FIG. 10 illustrates an example of cache information 204.
Each node holds unique cache information 204. The cache
information 204 includes data dirty queues 900, code dirty
queues 901, a clean queue 902, a free queue 903, and middle
dirty queues 904. The dirty queues 900, 901, and 904
indicate data in the cache 181 which has not been reflected
to the drives 113.

Each cell in a queue represents an entry; information in an
entry corresponds to information in a cache bitmap table 905
and the entry stores information selected from the cache
bitmap table 905. The arrows in a queue represent pointers
connecting entries. Filled circles represent start points.

The data dirty queues 900 indicate write data (stripes) of
hosts to be stored to the local drives 113. Each entry of write
data belongs to one of the site stripe types. The data dirty
queues 900 are the queues of individual site stripe types to
which the node 101 belongs as a data node.

The code dirty queues 901 indicate stripes to create
redundant codes that are included in the cache 181 and have
not been reflected to the drives 113. The stripes and the
redundant codes created from the stripes are dirty data.

The code dirty queues 901 include queues for the stripes
received from other nodes to create redundant codes. Since
the node 101 belongs to a plurality of protection layers,
queues for different stripe types of different protection layers
are prepared. The example of FIG. 10 shows queues for the
site stripe type and the geo stripe type. Dirty queues of
individual combinations of different stripe types and differ-
ent data locations (nodes) are used.

Each queue represents a list of data which belongs to an
associated stripe type and is to be stored to a physical area
in an associated node. The queue of SITE STRIPETYPE #0,
0 is a queue for the data which belongs to the site stripe of
a site stripe type number 0 and is to be stored to the node of
a node number O.

The middle dirty queues 904 are intermediate codes in the
cache 181 that have not been reflected to the drives 113. An
intermediate code is data created from a new stripe and an
old stripe. For example, it is an xor of the new stripe and the
old stripe. The intermediate code is difference data between
the new stripe and the old stripe; a node 101 can update a
redundant code of old stripes stored in the drives 113 to a
redundant code of new stripes using the intermediate code.
Details of using the intermediate code will be described
later.

The configuration of the middle dirty queues 904 is the
same as the queues for redundant codes in the code dirty
queues 901. That is to say, in this example, queues for
individual combinations of different stripe types and differ-
ent data locations (nodes) are used. Since a node 101
belongs to a plurality of protection layers, queues for dif-
ferent stripe types of different protection layers are prepared.
The example of FIG. 10 shows queues of site stripe types
and geo stripe types.

The clean queue 902 represents data in the cache 181 that
has been reflected to the drives 113. The free queue 903
represents the unused area in the cache 181.

The cache bitmap table 905 includes logical addresses,
cache addresses (locations on the memory), and sizes of
data, and further, dirty bitmaps and staging bitmaps. For
example, one entry indicates information on one slot having
a specific size in the cache 181.

US 10,496,479 B2

17

A logical address corresponds to the logical address of a
stripe described with reference to FIG. 8. The logical address
of a stripe transferred from another node 101 includes, for
example, a site number, a node number, an LDEV number,
and an LBA offset. A dirty bitmap indicates which part of the
corresponding area is dirty. A staging bitmap indicates which
part of the corresponding area has been staged to the cache
181. For example, one bit corresponds to one block in the
drives 113.

FIG. 11 illustrates a mapping image of the site protection
layer (layer number 2). Basically, this mapping image
applies to the node protection layer (Layer number 1) and
the geo protection layer (Layer number 3). In the following,
the number of stripe types per cycle is denoted by ¢, the
number of redundant codes (the number of parities) is
denoted by p, the number of stripes (the number of data
units) is denoted by d.

In the example of FIG. 11, the number of stripe types per
cycle is 5, the number of redundant codes is 1, and the
number of stripes is 3. Specifically, in one site stripe type,
one redundant code is created from three stripes at maxi-
mum and stored in a node of the same site stripe type. As
will be described later, a redundant code is created from 3 or
less stripes. If a plurality of redundant codes are created,
they are distributed and stored to different redundant code
nodes.

The table 621 shows data nodes and redundant code nodes
of stripe types. Individual columns correspond to nodes of
node numbers 0 to 8. The cylinders 622 represent the
physical storage areas of the nodes of node numbers 0 to 8
and the heights of the cylinders 622 represent the capacities
of their storage areas.

In the table 621, the numerals in the cells indicate stripe
type numbers. Each cell in the section D indicates the stripe
type number the data node belongs to. Each cell in the
section Q indicates the stripe type number the redundant
code node belongs to.

Each cell in the section S indicates the stripe type number
the spare node belongs to and the type (stripe/redundant
code) of data to be stored. A spare node is a node to
temporarily store the data of a failed node to recover the
redundancy level at a node failure.

The stripe type number of write data is determined by the
stripe number of the write data and the node number of the
node to receive and store the write data. Specifically, the
node 101 determines a stripe number by (the value of the
logical address of the write data+stripe size). In this
example, the logical address is a logical address in a pool
volume. Alternatively, it may be a logical address in a virtual
volume. Furthermore, the node 101 calculates the row
number of the write data by (stripe number mod ¢).

The node 101 determines a stripe type number from its
own node number and the calculated row number with
reference to the site static mapping table 211 for Layer
number 2. For example, the node 101 selects entries includ-
ing its own node number as a data node sequentially from
the top of the site static mapping table 211 and determines
the site stripe type number of the entry whose selection
number matches the row number to be the site stripe type
number of the write data.

The node 101 further determines the redundant code node
of the write stripe type the stripe belongs to with reference
to the site static mapping table 211 for Layer number 2. This
will be described later in description of write processing.

For example, in FIG. 11, the stripes of row number 0 in
the nodes of node numbers 0, 5, and 7 belong to a stripe type

10

15

20

25

30

35

40

45

50

55

60

65

18

of stripe type number 0. The stripes of row number 4 in the
nodes of node numbers 1, 3, and 8 belong to a stripe type of
stripe type number 13.

Furthermore, the redundant code node belonging to the
stripe type of stripe type number 0 is a node of node number
1 and the redundant code node belonging to the stripe type
of stripe type number 13 is a node of node number 4. Some
of the nodes store redundant codes of a plurality of stripe
types.

In the example of FIG. 11, the distribution of stripes in
section D is equal. The number of data nodes per stripe type
may be different depending on the storage capacities of
individual nodes. If the total number of nodes is small or a
fraction is generated, the redundant codes for a part of the
stripe types may be less than the others. Different stripe
types may use different algorithms to implement redun-
dancy.

A redundant code node of a stripe type is selected from the
nodes different from the data nodes of the stripe type. Data
writes from data nodes concentrate onto the redundant code
node. Accordingly, the redundant code node is selected so
that redundant codes will be distributed as equally as pos-
sible. As a result, the lives of the nodes 101 are equalized.
This is effective especially in the case where the drives 113
are SSDs. When the lives of the nodes are unequal, the
distribution of redundant code Q may be varied for equal-
ization.

A spare node is a temporal storage to recover the redun-
dancy level at an occurrence of a node failure. The spare
node to store a redundant code is selected from the nodes
other than the data nodes of the same stripe type. In the
example of FIG. 11, a failure occurs in the node of node
number 6. The spare node associated with the stripe type
number of a stripe or a redundant code temporarily stores the
corresponding stripe or redundant code.

For example, the node of node number 0 stores the stripe
of stripe type number 2 stored in the node of node number
6. The node of node number 7 stores the redundant code Q
of stripe type number 3 stored in the node of node number
6. Data restoration is performed by the node to store the data
or a different node. The data (stripes and redundant codes)
stored in the spare nodes are returned to one node when the
node has recovered or added.

In the above-described example, the stripe type is deter-
mined independently from the LDEV number in the pool
volume and depending on the address in the pool volume.
The data at the same in-volume address located in different
pool volumes belongs to the same stripe type. The address
area of a pool volume is classified to a plurality of stripe
types. As will be described later, a redundant code node
selects an appropriate number of appropriate stripes from the
stripes of the same stripe type and creates a redundant code
from the selected stripes, independently from the in-volume
address of the stripe.

FIG. 12A illustrates state transitions of a node 101 in the
distributed storage system. FIG. 12B illustrates state transi-
tions of a site 102 in the distributed storage system. Basi-
cally, state transitions in each protection layer are the same.

A normal state is an initial state or a normal state in
operation. The state changes to a rebuilding state when a
drive failure occurs. In the rebuilding state, the node 101 can
receive 1/Os of applications by correction read/write.

In a failure state, the node 101 is down and cannot execute
1/O. However, the drives 113 may not be failed. In that case,
data can be restored by data resynchronization that reflects
only the data newly written to the node 101 after the

US 10,496,479 B2

19

occurrence of a failure in the node 101, allowing the state to
change from the failure state to a normal state.

FIG. 13 illustrates an example of the logical configuration
of a virtual provisioning layer in a node 101 of the distrib-
uted storage system. Virtual volumes 1301A and 1301B are
virtual storage areas recognized by the hosts (the same node
and the other nodes) and volumes to be a target when a read
command or a write command is issued by a host.

A pool 1306 is composed of one or more pool volumes.
In the example of FIG. 13, the pool 1306 includes pool
volumes 1303A to 1303E. The pool 1306 may include pool
volumes of other nodes. The pool volumes 1303 A to 1303E
are composed of the storage areas of the drives 113. Spe-
cifically, the processor 119 manages correspondence rela-
tions of logical addresses of pool volumes and physical
addresses of the drives 113 to configure logical pool vol-
umes. Details will be described later.

The storage administrator can create a plurality of virtual
volumes in the pool 1306 through an instruction to the
processor 119 via the input and output devices. The proces-
sor 119 allocates a physical storage area from the pool 1306
only to the virtual volume storage area for which a write
command is issued.

In the example of FIG. 13, the virtual volume 1301A
includes virtual pages 1302A, 1302B, and 1302C, which are
allocated logical pages 1304A, 1304E, and 1304C, respec-
tively. The virtual volume 1301B includes virtual pages
1302D and 1302E, which are allocated logical pages 1304D
and 1304F, respectively.

Logical pages are dynamically allocated to virtual pages.
For example, when a write command is issued for the virtual
page 1302A in the virtual volume 1301A for the first time,
the processor 119 associates the virtual page 1302A with an
unused area (logical page 1304A) in the pool volume 1303A
(association 1305A). For the next read/write command for
the same page, the processor 119 executes 1/0 processing to
the logical page 1304A in the pool volume 1303 A based on
the association 1305A.

The above-described operation can show the host as if the
node 101 executes [/O processing (access processing) to the
virtual volume. Allocating an area of a pool volume only to
the area to be used by employing virtual volumes efficiently
utilizes the limited storage area. When all the data in the
logical page allocated to a virtual page is erased, the
processor 119 cancels the association of the logical page
with the virtual page to manage the logical page as a free
page. As a result, the limited storage area can be utilized
more efficiently.

The pool 1306 is formed of a plurality of tiers 115, 116,
and 117. In this example, the pool 1306 has three tiers: an
SSD tier 115 (TTER1), a SAS tier 116 (TTER2), and a SATA
tier 117 (TIER3). The SSD tier 115 has the highest capability
and the SATA tier 117 has the lowest. The pool volumes are
classified into the tiers 115, 116, and 117 and the pool
volumes belong to one of the tiers. The pool volume 1303A
belongs to the tier 115; the pool volumes 1303B and 1303C
belong to the tier 116; and the pool volumes 1303D and
1303E belong to the tier 117.

Fach virtual page has characteristics related to I/O pro-
cessing from hosts. For example, there are virtual pages
having higher 1/O frequency (access frequency) and virtual
pages having lower I/O frequency. This characteristic is
called access locality. Allocating the virtual pages having
higher I/O frequency to a higher-class tier, that is to say,
allocating the virtual pages having higher I/O frequency to
logical pages of the higher-class tier improves the perfor-
mance of the entire system. When a virtual page is allocated

10

15

20

25

30

35

40

45

50

55

60

65

20

to a logical page of some tier, it could be expressed that the
virtual page is allocated to the tier or that the virtual page is
allocated to a pool volume.

For example, assume that the pool 1306 has an SSD tier
115 capable of 100 IOPS and an SAS tier 116 capable of 10
IOPS and that a virtual page 1302A having a characteristic
of 20 IOPS is allocated to the SSD tier 115 and a virtual page
1302C having a characteristic of 50 IOPS is allocated to the
SAS tier 116. Since the SAS tier 116 can show the perfor-
mance of only 10 IOPS at maximum, the node 101 can show
the performance of only 10+20=30 IOPS as a whole. This
state 1s called a neck state.

If the allocation of the virtual page 1302C can be pro-
moted from the SAS tier 116 to the SSD tier 115, the node
101 can show the performance of 50+20=70 TOPS as a
whole. In this way, the overall performance of the system
can be improved by allocating virtual pages having higher
1/O frequency to a higher-class tier.

The aforementioned promotion copies the data in the
logical page 1304C to an unused logical page 1304B and
changes the association (1305C) of the virtual page 1302C
with the logical page 1304C to an association (1305B) of the
virtual page 1302C with the logical page 1304B. Page
demotion is also available in the same way.

The graph 271 shows distribution of /O frequency (/O
load) to the pages. The processor 119 can create load
distribution data to provide this graph 271 from the page
load distribution table 217. The distribution curve 1309 is a
curve representing I/Os for individual pages when the pages
are sorted in descending order of I/0 frequency. That is to
say, pages having more [/Os are located on the left side and
pages having less I/Os are located on the right side. Tier
allocation thresholds 1308A and 1308B are thresholds to
determine which page having which I/O frequency to be
allocated to which tier.

As described above, the overall performance of the sys-
tem can be improved by allocating pages with higher /O
frequency to a higher-class tier. Accordingly, the virtual
pages can be allocated in order of I/O frequency, from the
highest I/O frequency to the highest-class tier to the lowest
1/O frequency to the lowest-class tier. While the page load
distribution 271 has not been created since the start-up of the
storage system, the tier allocation thresholds 1308A and
1308B may take initial values at 0, for example.

For example, the processor 119 allocates the pages
included in the page range 1310A from the intersection of
the tier allocation threshold 1308A and the distribution line
1309 to the page having the highest [/O frequency to the
SSD tier 115. The processor 119 allocates the pages included
in the page range 1310B between the intersection of the tier
allocation threshold 1308A and the distribution line 1309
and the intersection of the tier allocation threshold 1308B
and the distribution line 1309 to the SAS tier 116. The
processor 119 allocates the pages included in the page range
1310C between the intersection of the tier allocation thresh-
old 1308B and the distribution line 1309 and the page having
the lowest [/O frequency to the SATA tier 116.

The storage administrator may specify the values of the
tier allocation thresholds 1380A and 1308B or alternatively,
the processor 119 may calculate the values for the tier
allocation thresholds 1380A and 1308B. For example, the
processor 119 may determine a tier allocation threshold for
defining the tier based on the I/O frequency distribution to
the virtual pages, the capacity of the tier, and the drive
capability of the tier. The drive capability of a tier is
predefined in accordance with, for example, the /O data
amount per unit time in the tier.

US 10,496,479 B2

21

FIG. 14 illustrates an example of page mapping in a
plurality of nodes in the distributed storage system. In FIG.
14, the distributed storage system provides virtual volumes
1301A to 1301C. The node 101A provides the virtual
volume 1301A; the node 101B provides virtual volumes
1301A and 1301B; and the node 101N provides a virtual
volume 1301C.

Anode 101 (any one of the nodes 101A to 101N) can hold
wo types of volumes. One type is pool volume 1303A
created from storage areas of the local drives 113. The data
10 be stored in a pool volume 1303A is placed to the local
drive 113.

The other type is volume 1303C straightly mapped to a
pool volume 1303B in a remote node 101. A volume 1303C
1s managed as a pool volume. The node 101 can perform 1/O
processing on the remote pool volume 13038 through the
pool volume 1303C.

This capability is known as storage external connection.
The node 101 converts the accessing address in the volume
1303C to the address in the remote pool volume 1303B to
send a command to the remote node 101. The node 101
holds a not-shown address mapping table between the pool
volume 1303C in the local node and the remote pool volume
1303B in the remote node.

The processor 119 maps virtual pages more frequently
accessed directly by hosts to its own pool volume 1303A and
maps virtual pages more frequently accessed by hosts via a
remote node 101 to the remote pool volume 1303B. Such
arrangement can reduce the response time to the hosts. The
data in the virtual pages allocated to the remote pool volume
1303B is stored in the remote drives 113.

Each node 101 selects the number of pool volumes to be
mapped to the remote nodes and virtual pages to be allocated
to remote pool volumes based on the network capability and
the capabilities of the local drives of the individual tiers, and
allocates logical pages so as to prevent bottle neck in the
network. Details of this allocation will be described later
with reference to FIGS. 23, 24A, and 24B.

The distributed storage system may consolidate the man-
agement of the storage capacity and increase or decrease the
pool volumes in individual nodes 101 depending on the
amount of used pages in the virtual volume. A node 101 may
use a pool volume 1303A as a virtual volume by straight
mapping. This arrangement reduces the amount of memory
used for the mapping table, improving the performance and
the availability.

FIG. 15 is a flowchart of read processing in the distributed
storage system. The processor 119 determines whether the
virtual page to be accessed at the address designated by the
received read command is unallocated to a pool volume with
reference to the page mapping table 215 (S501). The address
is designated with, for example, a virtual volume number
and a logical address. An LBA is specified with a start LBA
and a block length.

If the virtual page is unallocated (S501: Y), the processor
119 determines whether exclusivity is necessary (S506). The
processor 119 refers to the virtual volume management table
218 and determines that exclusivity is not necessary if the
owner node of the virtual volume is only the local node.

If the determination is that exclusivity is necessary (S506:
Y), the processor 119 obtains exclusivity (S507) and deter-
mines again whether the virtual page is unallocated to a pool
volume (S508). For an example of a method of obtaining
exclusivity, the processor 119 determines a representative
node uniquely determined from the read address with a hash
function and requests the representative node for coordina-
tion; the representative node coordinates the exclusivity.

10

15

20

25

30

35

40

45

50

55

60

65

22

If the virtual page has been allocated (S508: N), the
processor 119 releases the exclusivity (S512) and proceeds
to Step S502. If the virtual page is unallocated to a logical
page (S508: Y), the processor 119 returns zero data (S509),
and determines whether exclusivity is necessary (S510), like
the determination at Step S506. If exclusivity is necessary
(S510: Y), the processor 119 releases the exclusivity (S511)
because the exclusivity has already been obtained.

If, at Step S501, the virtual page has been allocated (S501:
N) and further, if the virtual page has been allocated to a
local pool volume (S502: Y), the processor 119 reserves a
local cache area, reads the data from the pool volume, and
returns the read data (S504). The processor 119 determines
whether the virtual page is allocated to a local pool volume
with reference to the pool volume management table 219
and not-shown external connection management informa-
tion.

If the virtual page is allocated to a pool volume 1303B in
a remote node 101 through a local pool volume 1303C, the
processor 119 determines that the virtual page is allocated to
a remote pool volume.

In reserving a cache area, the processor 119 locates the
cache area associated with the designated logical address
with reference to the cache information 204. If no associated
cache area exists, the processor 119 reserves a new area from
the free queue 903. If the free queue 903 is empty, the
processor 119 reserves a new area from the clean queue 902.
If the clean queue 902 is empty, the processor 119 destages
the data of some area in the dirty queues 900, 901, or 904 to
change the area to a free area.

If the virtual page to be accessed has been allocated to a
remote pool volume (8502: N), the processor 119 transfers
the read command to the remote node (S505). The processor
119 does not cache the read data within the local node. That
is to say, if the virtual page is allocated to another node, the
processor 119 does not cache the read data to the local
memory 118 (read-through caching) and the other node 101
caches the read data.

FIG. 16 is a flowchart of synchronous write processing.
This processing is executed upon receipt of a write com-
mand of a host (for example, an application program). This
processing stores write data to a local pool volume and in
addition, transfers the write data to other nodes to create a
site redundant code (inter-node redundant code) and a geo
redundant code (inter-site redundant code).

The processor 119 of a node 101 that has received a write
command determines whether the page is unallocated
(8601). Specifically, the processor 119 searches the page
mapping table 215 for the pool volume number and the LBA
corresponding to the address (the virtual volume number and
the LBA) designated by the write command. The processor
119 determines whether the virtual page is unallocated
depending on whether the corresponding address informa-
tion exists.

In the system of this embodiment, a plurality of applica-
tions are running and these applications are run by at least
one node in the system. It is supposed that a read request for
data is usually issued to the node that has received the write
command for the same data. In this application, therefore,
data of a write request is preferentially stored in the storage
area of the same node that has received the write request.
This arrangement increases the probability for the node to
provide read data in response to a read request, achieving a
speedy response to a read request.

However, if the capability of the drives 113 connected
with the node 101 is low compared to the capability of the
network 103, distributing data to many nodes may increase

US 10,496,479 B2

23

the throughput of the system. In view of the foregoing, the
storage area to allocate the virtual page may be changed by
using a round-robin technique, depending on the capability
of the network 103 or the capability of the drives 113
connected with the node 101. The above-described alloca-
tion policy may be based on not only the index of capability
but also an index of life to achieve efficient cost-effective-
ness, if flashes are used as the drives 113.

If the virtual page is unallocated (S601: Y), the processor
119 allocates the virtual page to a pool volume. The pro-
cessor 119 first determines whether the page mapping table
215 needs exclusivity in updating (S611). The reason why to
obtain exclusivity is to prevent allocation of areas of a
plurality of different pool volumes to the virtual page when
another node simultaneously allocates the virtual page.

The processor 119 refers to the virtual volume manage-
ment table 218 and if the table 218 indicates any node other
than the local node is included in the owner node, the
processor 119 determines that exclusivity is necessary. If the
owner node is only the local node, the processor 119
determines that exclusivity is not necessary. If the determi-
nation is that exclusivity is necessary (S611: Y), the pro-
cessor 119 obtains exclusivity (S612). The method of obtain-
ing exclusivity is the same as described in the read
processing with FIG. 16.

Next, the processor 119 determines again whether the
virtual page is unallocated (S613). This is because exclu-
sivity may be obtained by another node after making the
determination at Step S601 whether the virtual page is
allocated until obtaining exclusivity at Step S612.

If the page is unallocated (S613: Y), the processor 119
determines the pool volume where to allocate the virtual
page (S614). The processor 119 first checks whether the
local pool volume has a free page.

Specifically, the processor 119 refers to the local area
amount table 802 and determines whether the used amount
is less than the target amount in the entry of the stripe type
of the write data. If the used amount is less than the target
amount, the processor 119 allocates the virtual page to a
local pool volume. For example, the node 101 may have
not-shown local area tier management information and
selects a pool volume of the highest-class tier including a
free page.

If no free area exists in the local node, the processor 119
mounts a remote pool volume (a pool volume in another
node) to the local node, and allocates the page to the area.
Upon determination of the pool volume, the processor 119
allocates the virtual page to the pool volume (S615). Spe-
cifically, the processor 119 updates a correspondence rela-
tion in the page mapping table 215.

This step prevents performance degradation in the node in
receipt of a write request so that the system can maintain the
capacity efficiency and the performance as a whole, by using
the storage area of another node if the node in receipt of the
write request has already provided a large amount of storage
or if the capability of the drives 113 of the node is insufi-
cient.

Next, the processor 119 determines whether exclusivity is
necessary (8616). This determination is the same as Step
S611. If exclusivity is necessary (S616: Y), the processor
119 releases the obtained exclusivity (S618). If exclusivity
is not necessary (S616: N), the processor 119 proceeds to
S602,

The processor 119 determines whether the logical address
(virtual page) in the virtual volume designated by the write
command is allocated to a local pool volume with reference
1o the page mapping table 215 (Step 602).

10

15

20

25

30

35

40

45

50

55

60

65

24

If it is not allocated to a local pool volume (S602: N), the
processor 119 transfers the write command to a remote node
101 (S603). The remote node 101 executes write processing
in accordance with this flowchart. To maintain data coher-
ency, the processor 119 does not locally cache the write data.

If the virtual page is allocated to a local pool volume
(5602:Y), the processor 119 starts write processing for each
protection layer (5604 to S610). For example, assume that
the distributed storage system is configured with three
protection layers. They are, for example, a node protection
layer, a site protection layer, and a geo protection layer. The
processor 119 repeats the processing three times in total for
the three layers. In this example, the node protection layer is
set to synchronous write.

The processor 119 determines whether to apply synchro-
nous write to the layer (S604). Specifically, the processor
119 determines it with the virtual volume management table
218 by referring to the SYNC/ASYNC field for the virtual
volume to be written.

If synchronous write is not applied to the layer (S604: N),
the processor 119 records “UNCOMPLETED” in the state
field of the corresponding area in the data mapping table 701
without transferring the write data (stripe) to the remote
node 101. The state field indicates the state in the protection
layer being processed. The data in the cache 181 for which
the state field indicates “UNCOMPLETED?” is retained until
transfer.

The processor 119 determines whether the processing for
all the protection layers has been completed (S608), and if
the processing for all the protection layers has been com-
pleted, terminates the processing. If processing for all the
protection layers has not been completed (S608: N), the
processor 119 repeats the processing for the next protection
layer from Step S604. If synchronous write is to be applied
(S604: Y), the processor 119 reserves a cache area in the
local cache area 181 (S605). The method is the same as
described with reference to FIG. 15.

Next, the processor 119 determines whether to transfer
intermediate code (S606). The intermediate code represents
update differences between old data (the latest data at this
time) and new data (data to be written in this processing). In
the case of redundant data in RAID 5 for example, the
intermediate code is the xor value of the old data and the new
data. In another case of employing erasure coding, the
processor 119 may create a plurality of xor results by
multiplying coeflicients of the matrix.

Several criteria may be used to determine whether to
transfer the intermediate code. For example, the processor
119 may determine to transfer the intermediate code when
the remaining amount of the redundant code area in the
transfer destination node 101 is smaller than a threshold. As
a result, the transfer destination node can store the necessary
redundant code unfailingly. The processor 119 acquires
information on the amount of local area in the transfer
destination node 101 from the transfer destination node 101.

The processor 119 may create the intermediate code if its
response degrading effect at cache hit is small in the local
node. For example, when the local node is in a write mode,
when the local node uses specific low-latency drives, when
the local node is loaded higher than a threshold, or when the
communication distance between nodes is longer than a
threshold, the processor 119 transfers the intermediate code.

Alternatively, the processor 119 transfers the intermediate
code when the drives 113 have sufficient lives for write. In
the write mode, the processor 119 returns a completion
report to the host after destaging the write data from the
cache 181 to the drives 113.

US 10,496,479 B2

25

If determining to transfer an intermediate code (S606: Y),
the processor 119 creates the intermediate code from the
stripe (write data) in the cache 181 and the old stripe
retrieved from the drives 113 (S609) and writes the inter-
mediate code to the cache 181 of the target node (transfer
destination node) (5610).

The processor 119 determines the target node (transfer
destination node) of the intermediate code by the following
method. The processor 119 calculates the row number (the
value of the vertical axis in the area D in FIG. 11) by the
following formula. The method of calculating the row
number is the same as the method of calculating the row
number of a stripe with reference to FIG. 11

(Address value/Stripe size)mod ¢

The processor 119 determines the stripe type number (the
numeral in a cell in the diagram of FIG. 11) with reference
to the static mapping table for the protection layer.

The processor 119 determines the transfer destination
node 101 from the stripe type number with reference to the
static mapping table for this protection layer. The processor
119 transfers the intermediate code to the address of the
destination node 101 together with information on the
sender’s address (a site number, a node number, an LDEV
number, an LBA, a TL (Transfer Length)) and an identifier
identifying that the transferred is an intermediate code. The
LDEV number is the identifier of a pool volume.

The processor 119 refers to the static mapping table 211
for Layer number 2, for example, and determines the redun-
dant code node to eventually store the site redundant code Q
to be the transfer destination node.

The processor 119 refers to the static mapping table 212A
for Layer number 3, for example, and determines the trans-
fer destination site (the site to store the geo redundant code
R). For example, a representative node 101 of the site is
predetermined and the processor 119 transfers the interme-
diate code together with the aforementioned accompanying
data to the representative node 101.

The representative node 101 calculates a hash value from
the transfer source address information using a hash func-
tion. The representative node 101 determines the transfer
destination node 101 from the calculated hash value with
reference to the consistent hashing table 212B. The desti-
nation node 101 is the node to eventually store the geo
redundant code R (redundant code node).

The transferring data via the representative node 101 has
disadvantages of requiring two data transfers, access con-
centration to the representative node 101, and deterioration
of availability caused by a failure in the representative node
101. Accordingly, a plurality of representative nodes 101
may be prepared to select one by round robin.

Instead of the representative node 101, the processor 119
may directly determine the node in the remote site to store
the geo redundant code R. Specifically, the transfer source
node 101 may hold in advance a consistent hashing table
212B for the transfer destination site and the processor 119
determines the transfer destination node 101 in accordance
with this table.

In the case where each node 101 holds consistent hashing
tables 212B of the other sites, synchronization of the con-
sistent hashing tables 212B among the sites is overhead. For
this reason, the distributed storage system may periodically
update the tables without frequent synchronization by exclu-
sive update. In such a case, the destination node that has
received an intermediate code from a remote site may
determine whether the intermediate code has been sent to the
correct destination with reference to its own consistent

10

15

20

25

30

35

40

45

50

55

60

65

26

hashing table 212B and if the intermediate code has been
sent to a wrong destination, it may transfer the received data
to the correct node 101.

If the transfer destination node 101 has dirty data having
the same source address of the intermediate code, the
processor 119 of the destination node 101 calculates the xor
of the intermediate code and the dirty data and updates the
data in the cache with it. The processor 119 of the destination
node 101 connects the cache information on the intermediate
code to the middle dirty queue 904. The transfer destination
node 101 may calculate the xor of the intermediate codes
from different sources for the same redundant code and
updates the data in the cache 181 with it.

At Step S606, if determining not to transfer the interme-
diate code (S606: N), the processor 119 writes write data to
the cache 181 of the target node (transfer destination)
(S607). This example basically stores the write data prefer-
entially to the node that has received the access. As
described above, transferring the data to a target node
(transfer destination) different from the write target means
that redundancy is guaranteed in the cache. Furthermore,
separately creating an inter-node redundant code saves the
amount of storage for the redundant code while maintaining
the redundancy, achieving capacity efficiency.

The method of determining the transfer destination node
101 and the method of transferring data are the same as those
of Step S610. The transfer source node 101 transfers the
write data together with information on the sender’s address
(a site number, a node number, an LDEV number, an LBA,
a TL) and an identifier identifying that the transferred is
normal data. At the destination node, the processor 119
connects the cache information corresponding to the write
data to the associated redundant code dirty queue 901.

In writing write data not to a local pool volume but to a
remote pool volume in order to reduce the flow rate of write
data, an existing erasure coding technique may be employed.
The existing erasure coding technique divides write data into
stripes, creates redundant data with the divided data, and
distributes and stores the divided data and redundant data to
a plurality of nodes.

The redundant code may include information on the
encoding scheme for identification of which redundant code
creation method has been used. The use of the existing
erasure coding scheme may be limited to the data which will
not cause bottle neck of the network because of read from
remote nodes.

FIG. 17 is a flowchart of asynchronous write processing.
This processing is executed asynchronously with a host /O
and transfers data that belongs to a protection layer set to
ASYNC and has not been transferred to a remote node.
Steps S702 to S708 in FIG. 17 are the same as Steps S605
to S608 in FIG. 16. This section describes only the differ-
ences. In each node 101, the processor 119 executes this
processing on all virtual volumes registered in the page
mapping table 215.

The processor 119 determines whether to apply asynchro-
nous write to the virtual page being processed (S701).
Specifically, the processor 119 refers to the data mapping
table 701 and checks the state of the pool volume area
corresponding to the virtual page. If the state is “UNCOM-
PLETED” in the protection layer being processed, the
processor 119 determines to apply asynchronous write to the
virtual page (S701:Y), and proceeds to Step S702.

When processing for all the virtual pages has been com-
pleted (S709: Y), the processor 119 exits this flow. The
processor 119 may execute the asynchronous write process-
ing periodically or constantly. The processor 119 may

US 10,496,479 B2

27

dynamically change the frequency of execution of this
processing or the data transfer rate depending on the amount
of pages in the UNCOMPLETED state.

FIG. 18 is a flowchart of destage processing. This pro-
cessing is executed asynchronously with host I/Os when the
cache 181 has dirty data or data unreflected to the media
(drives 113). Since creation of redundant data is basically
completed within the node (each node creates redundant
data from data sent from other nodes), the inter-node traffic
amount to create redundant data can be small. Furthermore,
destinations of redundant data are balanced among many
nodes in accordance with the static mapping table 211; the
destage processing can be distributed efficiently.

The cache 181 includes two kinds of dirty data. One is
write data to be stored in the local drives 113. The other is
data transferred from other nodes to create redundant data.
The data transferred from other nodes includes intermediate
codes.

Dirty data is managed by the data dirty queues 900, the
code dirty queuves 901, and the middle dirty queues 904. The
flowchart of FIG. 18 illustrates destaging of dirty data
managed by the data dirty queues 900 and the code dirty
queues 901.

Upon start of this processing, the processor 119 finds the
dirty data to be processed with reference to the data dirty
queues 900 and the code dirty queues 901. The processor
119 determines whether the data is write data to be stored to
the local drives 113 (S801). If the data is indicated by the
data dirty queues 900, the data is write data.

If the data is write data (S801: Y), the processor 119
writes the write data to the local drives 113 (S808). The data
is stored in accordance with the log-structured scheme.
When storing the write data to the drives 113 in accordance
with the log-structured scheme, the processor 119 records
the correspondence relation between the logical address in
the pool volume and the physical address in the drives 113
and the state of the data to the data mapping table 701 as
illustrated in FIG. 8.

Further, the processor 119 records the correspondence
relation between the logical address in the pool volume and
the physical address in the drives 113 to the reverse mapping
table 703. If the drives 113 do not have free space, the
processor 119 may first perform capacity depletion manage-
ment processing described with reference to FIG. 19 and
then execute data write to the drives 113.

The processor 119 determines whether all dirty data has
been processed (S806). If all the dirty data has been pro-
cessed (S806: Y), the processor 119 exits this flow.

If the data is not write data, meaning if the data is a stripe
to create a redundant code (S801: N), the processor 119 finds
dirty data of the same stripe type (5802).

Specifically, the processor 119 acquires stripes transferred
from other different nodes 101 including the data to be
processed from the queue including the data in the code dirty
queues 901. The processor 119 acquires X stripes if possible
in accordance with the data protection policy specified by
the user (XDYP: X units of data at maximum to Y codes of
redundant data). Designation of data protection policy by the
user will be described later with reference to FIG. 27.

Specifically, the processor 119 selects stripes as many as
possible within the number of data node IDs in the site static
mapping table 211 or the geo static mapping table 212A to
implement redundancy satisfying the uset’s specification as
much as possible. The transfer source nodes of the selected
stripes are all different. If the queue of the data to be
processed includes stripes received from all the data nodes
belonging to the stripe type, the processor 119 selects stripes

10

15

20

25

30

35

40

45

50

55

60

65

28

of all the data nodes. The logical addresses in the transfer
sources do not matter in selecting the stripes.

As understood from the above, the number of stripes to be
the components in creating a redundant code is not fixed and
undetermined. The combination of logical addresses of the
stripes to be the components in creating a redundant code is
also undetermined. This configuration allows a redundant
code to be efficiently created only from the stripes in receipt.
If the code dirty queues 901 do not include the same stripe
type of stripes received from other nodes 101, the processor
119 may create a redundant code only from the data being
processed and store it to the drives 113.

In transferring write data to the node to create its redun-
dant code in synchronous write processing, if new synchro-
nous write processing is started when write data has not been
destaged to the drives in the transfer source node, the write
data in the cache might be overwritten to become unable to
be restored.

Accordingly, the node to store the redundant data must
use only the data that has been destaged in the source node
to create the redundant data. To implement this arrangement,
the transfer source node may notify the node to store the
redundant data of completion of destaging so that the node
to store redundant data destages the data only in the case of
receipt of the notification. Alternatively, the transfer source
node may transfer the data to the node to store the redundant
code when the transfer source node destages the data. Still
alternatively, the cache may be configured not to overwrite
in updating the data therein (for example, to store data by log
buffering).

The processor 119 can also find dirty data from the queue
of the same stripe type in the middle dirty queues 904. The
processor 119 calculates the xor of the corresponding redun-
dant code stored in the drives 113 and the intermediate code
and updates the redundant code. If the updated redundant
code is created from only the stripes of the nodes 101
different from the transfer source node 101 of the data being
processed, the processor 119 creates a new redundant code
from the data being processed and the updated redundant
code.

The processor 119 may select stripes to create a redundant
code so that the rate of the old data (old stripes) will be as
high as possible. If a redundant code can be created with
only old stripes, the processor 119 selects only old stripes.
Increasing the rate of the old data expedites the time the
redundant code becomes invalid data, so that the redundant
code storage area can efficiently increase free space.

The processor 119 calculates a redundant code from the
selected stripes and writes it to the drives 113 (S803). The
write to the drives 113 is basically the same as Step S808 and
is addition by the log-structured scheme. This operation
omits retrieval of old data to achieve speedy and efficient
redundant code creation and drive write.

The processor 119 records the correspondence relation
between the physical area holding the calculated redundant
code and the pages of the pool volumes to the redundant
code mapping table 702, not to the data mapping table 701.
The processor 119 further records the correspondence rela-
tion between the logical addresses in the pool volumes and
the physical address in the drives 113 to the reverse mapping
table 703. Since a redundant code is created from a plurality
of stripes, the mapping tables have a plurality of references
for a single physical address.

After writing the redundant code to the drives 113, the
processor 119 notifies the transfer source nodes 101 (S805).
Each of the transfer source nodes 101 updates the data
mapping table 701 by changing the state of the data in the

US 10,496,479 B2

29

layer being processed into “COMPLETED”. The state field
is referred to in order to determine whether to transfer the
data again at a node failure. When all the dirty data has been
processed (S806: Y), the processor 119 exits this flow.

In the case of employing a coding scheme that provides
wo or more redundant codes, such as erasure coding, if the
plurality of nodes for creating a redundant code indepen-
dently create a redundant code with different data combi-
nation, data restoration could be difficult (because of the loss
of maximum distance separability (MDS) or increase in
computing amount for restoration).

Hence, after creating a first redundant code, the node that
has created the redundant code may determine the nodes to
create the second and the subsequent redundant codes with
reference to the static mapping table 211 and notifies the
nodes to create the second and the subsequent redundant
codes of the set of addresses of the data from which the
redundant code has been created.

The nodes to create the second and subsequent redundant
codes create the second and subsequent redundant codes
with the set of the addresses of the data notified of to
maintain the maximum distance separability and to allow
data restoration. Another method can also be provided that
the node for creating the first redundant code creates the
second and the subsequent redundant codes and transfers the
redundant codes to the relevant nodes.

In destaging an intermediate code, the processor 119
creates a new redundant code from an old redundant code
stored in the drives 113 and the intermediate code and
overwrites the old redundant code in the drives 113 with it.
Since the operation is overwriting, the mapping table does
not change. Although updating a redundant code with an
intermediate code requires reading old data, the redundant
code node can save the use of the local area.

If the middle dirty queues 904 include a plurality of
intermediate codes for a single redundant code, the proces-
sor 119 calculates the xor of all the intermediate codes to
create a new intermediate code, and updates the redundant
code with the new intermediate code. The intermediate
codes for the same redundant code include different genera-
tions of data at the same logical address and intermediate
codes of different nodes 101.

For example, assuming that an old redundant code is A
xor B, examples of intermediate codes for the single redun-
dant code include an intermediate code A xor A', an inter-
mediate code B xor B, and an intermediate code A' xor A",
where A" is the newest data and A' is the oldest data; the data
B is new data and data B' is old data.

The processor 119 can know the physical address of the
redundant code of an intermediate code selected from the
middle dirty queues 904 with reference to the redundant
code mapping table 702. The processor 119 can further
locate the logical addresses of the stripes of the intermediate
codes corresponding to the redundant code with reference to
the reverse mapping table 703.

A specific example of updating a redundant code is
described as follows. The following example employs RAID
6 using Reed Solomon coding (Galois coeflicients: Al to
A3) by way of example.

(1) Code Dirty Queues 901

The processor 119 selects dirty data X1 to X3 from the
dirty queues 901 and calculates a redundant code P1 or P2
using the following formula.

P1=X1 xor X2 xor X3

P2=(X1*A41)x0r(X2*42)x0r(X3*43)

15

20

25

30

35

40

45

50

55

60

65

30

The redundant code P1 or P2 is written to a new area in
the local storage device.

(2) Middle Dirty Queues 904

The processor 119 extracts new intermediate dirty data
M1 and M2 corresponding to old redundant data P1' or P2,
which has been written to the local drives 113, from the
middle dirty queues 904. The number of intermediate codes
is not limited to 2. The processor 119 calculates a new
redundant code MP1 or MP2 using the following formula.

MP1=M1 xor M2

MP2=(M1*41)xor(M2%42)

The processor 119 calculates a new redundant code P1 or
P2 using the following formula:

P1=P1' xor MP1

P2=P2' xor MP2

The previous area (P1' or P2') is overwritten with the new
redundant code P1 or P2.

As described above, a redundant code node 101 dynami-
cally selects stripes from a single stripe type of stripes and
creates a redundant code from the selected stripes. This
configuration efficiently creates a redundant code from
transferred stripes without retrieving an existing redundant
code.

The dynamic selection of stripes in this example is
selection in which at least either the combination of stripes
to be selected or the number of stripes is undetermined.
Although the foregoing example selects stripes independent
from both of the number of stripes and the combination of
addresses, either one may be fixed. The addresses in the
combination of addresses are addresses specified with a
node, a volume, and an in-volume address.

The drive write of a redundant code does not need to
employ the log-structured scheme. That is to say, a node 101
may rewrite an old redundant code with a new redundant
code, which has been created from the combination of data
at the same addresses as the data for the old redundant code,
without adding the new redundant code to the local area. In
the configuration which does not employ the log-structured
scheme, a redundant code of combination of data at the
addresses different from the any combination of addresses of
the existing redundant codes is added to the local area.

The above-described example creates a redundant code
from only stripes of the same predefined stripe type. Unlike
this, the system may create a redundant code from any
combination of stripes without defining stripe types.

FIG. 19 is a flowchart of processing of capacity depletion
management. This processing attempts to erase data when
the amount of data in the drives 113 exceeds a predetermined
target amount, so that necessary data can be stored in the
limited area. The types of data to be erased are write data
(stripes) and redundant codes. This processing may be
performed asynchronously with host I/Os. The relations
between used amounts and target amounts are indicated in
the local area amount table 802.

The flowchart of FIG. 19 is applied to erasure of data in
the redundant code area and data stripe area and is not
applied to erasure of data in the spare area. If separate local
area amount tables 802 are provided for individual tiers, this
processing is executed for each tier.

The processor 119 refers to the local area amount table
802 and checks whether the used amount for the selected
data type exceeds the target amount (S901). If the used
amount for the selected data type exceeds the target amount

US 10,496,479 B2

31
(S901: Y), the processor 119 determines whether the data
type is redundant code type (S902).

In this example, the data types are categorized to redun-
dant code type, write data type (stripe type), and spare area
data type as shown in the local area amount table 802. The
redundant code type is further categorized into node redun-
dant code type, site redundant code type, and geo redundant
code type; the write data type is further categorized into
individual site stripe types.

If the data type for which the used amount exceeds is one
of the redundant code types (S902: Y), the processor 119
refers to the invalid list §01B and the log-structured map-
ping table 213 and searches for the redundant codes of this
redundant code type (S907). An invalid redundant code is a
redundant code that all the stripes to calculate the redundant
code are invalid. Since the all source stripes are updated old
data, the redundant code can be erased.

If some invalid redundant code of the redundant code type
exists (S907:Y), the processor 119 releases the area (S908).
To release the area, the processor 119 deletes the relation of
the physical address of the area and the pool volume-related
logical address in the redundant code mapping table 702,
deletes the area from the invalid list 801B, reconnects the
area to the free list 801C, and reduces the used amount for
the corresponding redundant code type in the local area
amount table 802.

If no invalid redundant code of the redundant code type
exists (S907: N), the processor 119 executes redundant code
merge processing (S909). This processing can reduce the
used amount for redundant codes.

For example, assuming that a redundant code P1=X" xor
Y' xor Z (the primes (') denote invalid data) and a redundant
code P2=] xor K xor L' exist, if J, K, and Z are stripes
existing in different nodes, the processor 119 can calculate
a new redundant code P3=J xor K xor 7 according to P1 xor
P2 xor X' xor Y' xor L'.

The processor 119 acquires logical addresses and genera-
tion information of the source stripes of the redundant code
with reference to the log-structured mapping table 213. The
processor 119 acquires X', Y' and [' from other nodes 101.

The processor 119 releases the areas of the redundant
codes P1 and P2 and writes the new redundant code P3 to the
drives 113 to reduce the used amount for redundant codes.
The processor 119 may preferentially select redundant codes
to reduce a larger amount from the used amount for redun-
dant codes.

After the merge processing, the processor 119 rechecks
whether the used amount for the specific redundant code
type exceeds the target amount (8910). If the used amount
still exceeds the target amount (S910: Y), the processor 119
executes rebalancing (S906). As will be described later, the
rebalancing adjusts the amount of used pages among pool
volumes. For example, it relocates the data to a pool volume
in a different tier or pool volume in a remote node 101
(remote pool volume). After completion of the rebalancing,
the processor 119 proceeds to Step S901. If the used amount
does not exceed the target amount (S910: N), the processor
119 proceeds to Step S901.

If the selected data type is not the redundant code type,
meaning if the data type is one of the stripe types (8902: N),
the processor 119 determines whether any erasable write
data (stripe) exists in the selected stripe type (S903). The
erasable stripe is an updated old stripe and an invalid stripe.
The processor 119 searches for invalid stripes of this stripe
type with reference to the invalid list 801B and the log-
structured mapping table 213.

10

20

25

40

45

60

65

32

If some erasable stripe exists (5903:Y), the processor 119
executes redundant code clean-up processing (S904). This
processing cleans up the redundant codes of the stripe to be
erased. The cleaning up is performed for both of the site
redundant code and the geo redundant code. Specifically, the
following steps are executed in each protection layer.

(1) The processor 119 makes an inquiry to the redundant
code node 101 of the stripe to be erased whether the node
101 has any redundant code including the stripe to be erased.
The stripe is specified with, for example, a site number, a
node number, an LDEV number, and an LBA.

(2) If the redundant code node 101 in receipt of the
inquiry has a redundant code including the stripe to be
erased, the processor 119 sends the stripe to be erased to the
redundant code node 101. If the redundant code node 101
does not have the redundant code, this processing is termi-
nated.

(3) The redundant code node 101 creates a new redundant
code by erasing the stripe to be erased from the current
redundant code with the received stripe to be erased. For
example, the redundant code node 101 calculates the xor of
the stripe to be erased and the old redundant code to create
a new redundant code. The redundant code node 101 over-
writes the old redundant code stored in the drives 113 with
the new redundant code.

The above-described update of the redundant code
derived from erasure of a stripe prevents the erasure of a
source stripe of the redundant code from lowering the
redundancy level of the other stripes of the same redundant
code.

In erasing a redundant code, the redundant code node may
inquire whether the stripes corresponding to the redundant
code are the latest version. Each stripe is located by a logical
address indicated in the reverse mapping table 703. If the
stripe is the latest version, the redundant code node recreates
a new redundant code of the stripe.

Next, the processor 119 releases the area (S905). This is
the same as Step S908. Thereafter, the processor 119 returns
to Step S901.

If the used amount for the spare area is more than the
target amount, the processor 119 may execute stripe erasure
in the flowchart of FIG. 19, execute redundant code erasure,
and then execute rebalancing, for example. The sequence of
the stripe erasure and the redundant code erasure may be
reversed. When the used amount becomes less than the
target amount at one of the steps, the subsequent steps are
not necessary.

FIG. 20 illustrates a concept of the processing of capacity
depletion management. This drawing illustrates the redun-
dant code clean-up processing. The node 101A transfers a
stripe 781 to be written to the node 101B (T212). Likewise,
the nodes 101C and 101C transfer stripes 782 and 783 to the
node 101B. The transferred stripes 781, 782, and 783 are
denoted by Z, D, and], respectively.

When a drive 113 of the node 101A is depleted, that is,
when the used amount in the drive 113 of the node 101A
exceeds a threshold, the node 101A attempts to erase old
data. An old stripe is denoted by X". The reference signs X'
and X" represent past data (invalid data) and X represents
current data.

A redundant code created only from past stripes is mean-
ingless to be held any longer and can be erased. However, a
redundant code created from a stripe set including a current
stripe cannot be erased. If such a redundant code exists, the
past stripe used to create the redundant code cannot be
erased from the drive because the stripes would become
unrestorable.

US 10,496,479 B2

33

Accordingly, before erasing the past stripe, the node sends
the stripe to the node storing the redundant code of the stripe
1o request for cleaning up. For example, in FIG. 20, the node
101B has a redundant code of X" xor C xor H. The node
101A sends the past stripe X" to the node 101B before
erasing the past stripe X" (T202).

The node 101B calculates X" xor C xor H xor X" from the
past stripe X" and the redundant code X" xor C xor H to
obtain C xor H. Thereafter, the node 101A erases the past
stripe X" in the drive 113.

FIG. 21 is a flowchart of saving/rebuilding processing.
This processing is executed by each node 101 to address a
trouble occurred in the distributed storage system. The
processor 119 of each node 101 can detect a trouble by
referring to the state control tables for individual protection
layers, specifically, the drive state management table 221,
the node state management table 222, and the site state
management table 223. As mentioned above, information on
a trouble detected by one of the nodes 101 is shared within
the system.

In FIG. 21, the node 101 determines whether the abnor-
mal resource (drive, node, site, or the like) is in a failure state
(S211). The resources have three kinds of states: “NOR-
MAL” state, “FAILURE” state, and “WARNING” state. The
node 101 can identify the state of the abnormal resource by
referring to the state management tables for individual
protection layers.

When a failure occurs in a resource such as a node or a
site, the node (spare node) to rebuild the data held in the
resource is predetermined as described with reference to
FIG. 11. Each node 101 holds information indicating the
resources for which the node should become a spare node
and the data the node should rebuild; the processor 119
rebuilds the necessary data upon detection of a failure in the
resource assigned to its local node.

If the state management table indicates “FAILURE”, the
processor 119 identifies that the abnormal resource is in a
failure state (S211: Y) and execute preferential rebuilding
(S212). The preferential rebuilding executes rebuilding
starting from the data of the stripe type having the lowest
redundancy level in the protection layer.

Rebuilding restores lost data from the remaining stripes
and redundant data. The node 101 finds out the stripe type
for which the redundancy level is lowered by losing data
stored in the error resource and the redundancy level with
reference to the static mapping tables 210 to 212 for indi-
vidual protection layers.

Each node 101 notifies the other nodes of the processing
to execute and the progress of the processing and waits for
the completion of preferential rebuilding for the data having
a lower redundancy level in the other nodes 101. For
example, a node 101 waits for the completion of rebuilding
for the stripe type of the redundancy level O at the other
nodes 101 to start rebuilding for the stripe type of the
redundancy level 1. This arrangement prevents the rebuild-
ing for the stripe type of the redundancy level 0 from taking
long because of the rebuilding for the stripe type of the
redundancy level 1.

It is commonly known that the technique of erasure
coding having MDS (Maximum Distance Separable) prop-
erty can restore data for which a given number of redun-
dancy levels have been lost.

Basically, a spare node to hold rebuilt data in its local
storage device reads the redundant code and stripes to
rebuild the data. If the spare node is highly loaded, a
different node may rebuild the data and transfer the data to
the spare node.

10

15

20

25

30

35

40

45

50

55

60

65

34

If the data of the failed node is unnecessary, for example,
in the case where the virtual volume does not have an ownetr,
only the redundant code may be changed without rebuilding
in the spare node. For example, the spare node writes zero
data and the redundant code node creates a new redundant
code from the stripes other than the lost stripe of the old
redundant code and the zero data.

The redundant codes of upper protection layers lost by the
failure of the resource can be recreated. For example, when
a failure occurs in a drive in some node, the node 101
recreates the site redundant code or the geo redundant code
within the node 101. The node 101 requests other nodes 101
to transfer the stripes required to create the site redundant
code or the geo redundant code. The node 101 can identify
the nodes holding the stripes with reference to the redundant
code mapping table 702 and the reverse mapping table 703.

The site redundant codes and the geo redundant codes
may be made redundant within the node holding the redun-
dant code. Despite of increase in overhead (operating time
of the processor, used storage area, life consumption of flash
media, and the like) in implementing redundancy, commu-
nications among the nodes involved with a failure in the
drive will be unnecessary. After completion of preferential
rebuilding, each node updates the node registered for the
stripe type in the static mapping tables 210 to 212 with the
spare node.

Regarding old data (for which new data has been written),
if a redundant code is created using the data, the redundant
code node needs to recreate the redundant code by making
only the new data dirty among the data corresponding to the
redundant code.

Each node 101 checks whether the redundancy levels of
all stripe types in the protection layer have recovered (S213).
Each node 101 notifies the other nodes of completion of data
recovery. When the redundancy levels have recovered in all
the stripe types in the protection layer, the processing
proceeds to Step 214. If the processing has not been com-
pleted on all layers (S214: N), the distributed storage system
repeats the processing from Step S211 on an upper protec-
tion layer.

If the processing on all the layers is completed (S214: Y),
the distributed storage system reviews the owners of the
virtual volumes (S215). Specifically, when some node 101
falls into a failure state, a predetermined other node 101
takes over the virtual volumes assigned to the node 101.

If the determination at Step S211 is that the abnormal
resource is not in a failure state (S211: N), that s, if the state
management table indicates “WARNING”, the node 101
determines whether data saving is necessary (S216). This
determination is made based on the extent of the risk of data
loss in the distributed storage system.

It is generally known that a drive in a warning state has
a higher probability to become failed compared with a drive
in a normal state. However, even in a warning state, the drive
may not become failed. Accordingly, the determination is a
trade-off between increase in load of the storage system and
risk avoidance against data loss by the saving processing.

For example, in the case where the system redundancy
level is 2, it is efficient to preferentially save the data of the
stripe type including more stripes in the warning state when
two or more drives fall into the warning state. This is
because the amount of transferred data for the saving can be
small. The system redundancy level is the lowest redun-
dancy level within the entire system.

In an example, the node 101 determines that saving is
necessary at Step S216 when N or more resources are in the
warning state. The number N is an integer predetermined

US 10,496,479 B2

35

based on the system redundancy level. If the determination
is that saving is necessary (S216: Y), the node 101 executes
preferential saving (S217).

The preferential saving copies data of lower redundancy
level among the data stored in the resource in the warning
state to a predetermined spare area. The place to save the
data is the same as the place to be used in rebuilding. In the
data saving area (spare area), the saved data may be over-
written at every issuance of a warning, like LRU caching.

The above-described example determines the priority
level of the execution based on the redundancy level of the
stripe type; the node 101 may determine the priority level of
the execution based on the redundancy level of a stripe or
redundancy code. Each stripe or redundant code belongs to
a plurality of protection layers and the total number of the
redundancy levels is the redundancy level of the data.
Accordingly, as the rebuilding/saving processing progresses,
the system redundancy level rises together.

To continue processing of a node (site) in another node
(site) when the node (site) falls into a failure state, the
owners of each virtual volume should be distributed in
advance as described above. For example, different nodes in
a site or nodes in different sites are determined to be the
owners of the same virtual volume.

To expedite the rebuilding or saving, the rebuilding or
saving processing may be executed across protection layers.
For example, in executing rebuilding in response to a failure
of a drive, the node may concurrently restore the data in the
drive using an inter-node redundant code while executing
the rebuilding in the node. The node retrieves data simul-
taneously from a larger number of drives, expediting the
rebuilding. Whether to proceed with the data restoration
across protection layers may be coordinated depending on
the load to the network and the acceptable load.

FIG. 22 is a flowchart of data resync processing. This
processing is executed as reinstatement processing from a
power shut-down or copy back processing. The copy back
processing is copying data in a spare area to a new resource
after resource replacement subsequent to rebuilding. After
completion of this processing, the state of the resource turns
1o the normal state.

The processor 119 of the node 101 executing this pro-
cessing determines whether the processing to be performed
is reinstatement processing (S221). Specifically, the proces-
sor 119 determines whether the local node is a new node or
is recovering from a failure such as power shut-down. In the
case of recovering from a failure, the processor 119 deter-
mines the processing is reinstatement processing (S221: Y).

More specifically, the processor 119 holds a correspon-
dence table between identifiers uniquely identifying nodes
like the mac addresses of LAN controllers and node num-
bers as information shared in the distributed storage system
and determines whether the local node is in registration of
the storage system.

In the case of reinstatement processing (S221: Y), the
processor 119 checks the areas in need of restoration (S222).
The specific method of checking an area in need of resto-
ration is, for a redundant code, that the processor 119 refers
1o the states in the data mapping tables 701 of the other
nodes 101 and acquires stripes for the redundant code in
unreflected states from the other nodes 101. If the redundant
code has already been rebuilt in the spare area, the processor
119 acquires the redundant code.

For write data (a stripe), another node 101 manages
differences written after occurrence of the failure in a
bitmap; accordingly, the processor 119 copies back only the
differences from the spare area for restoration. Alternatively,

10

15

20

25

30

35

40

50

55

60

65

36

the processor 119 may identify the latest update time with
reference to its local reverse mapping table 703 and requests
the other node 101 for valid data written after the latest
update time. In this way, the processor 119 determines the
write data (stripes) and redundant codes to be restored and
executes area restoration processing (S225).

If the processing to be performed is not reinstatement
processing (S221: N), the processor 119 executes copy back
processing (S226). The processor 119 copies back the write
data (stripes) and redundant codes rebuilt in the spare area.
The processor 119 executes this processing in each protec-
tion layer. In the upper layers, only the redundant codes are
copied. After completion of the processing in all layers
(8227:Y), the processor 119 exists this flow.

FIG. 23 is a flowchart of reallocation processing. This
processing optimizes the page allocation in the distributed
storage system. This processing is executed at an occasion
such as when a new resource is added to the distributed
storage system, when a resource is removed from the
distributed storage system, when the capacity of some pool
volume is depleted, or at every cycle of checking the change
in load, by each of the relevant nodes 101.

Upon start of this processing, the processor 119 calculates
overall thresholds of I/O load in the pool based on the page
load distribution table 217 indicating the total I/O load to the
virtual pages (5231). The total /O load to a virtual page is
a total sum of the host access loads in all owner nodes of the
virtual page. The [/O load by the host accesses to the virtual
page in each owner node is referred to as local load. The I/O
load of a virtual page may be represented by, for example,
1/O frequency.

The overall thresholds can be calculated by the same
method to calculate tier allocation thresholds described with
FIG. 13. Each overall threshold indicates a boundary of page
/O frequency between tiers. The capacity and I/O capability
of each tier in the pool are determined in accordance with the
capacities and I/O capabilities of all pool volumes in the tier.
The tiers, capacities, and 1/O capabilities of pool volumes
are managed by not-shown management information.

Next, the processor 119 calculates local thresholds for the
individual tiers based on the page load distribution table 217
indicating the total I/O load to the virtual pages and the page
load distribution table 217 indicating the local loads in the
local node (S232). A local threshold indicates the boundary
of [/O frequency for the virtual pages the data in which is to
be placed in the local node among the virtual pages in a tier
determined by the overall thresholds.

FIGS. 24A and 24B each illustrate an example of a
method of determining a local threshold. The way to read the
graphs of FIGS. 24A and 24B is the same as that for the
graph 271 in FIG. 13. The virtual axis represents page 1/O
load indicated by page I/O frequency and the horizontal axis
represents virtual pages sorted in the descending order of
local I/O load.

FIGS. 24A and 24B each indicate a total I/O load curve
241 and a local I/O load curve 242 in a single tier. As
mentioned above, the virtual pages allocated to a tier are
determined in accordance with the total I/O load to the
virtual pages and the overall thresholds.

FIGS. 24A and 24B each indicate 1/O load distribution to
virtual pages allocated to one tier among the virtual pages
owned by the local node 101. The virtual pages owned by
the local node 101 can include virtual pages allocated to
local pool volumes and in addition, virtual pages allocated
to remote pool volumes.

FIGS. 24A and 24B each indicate a local threshold 246.
The virtual pages showing the local I/O load higher than the

US 10,496,479 B2

37

local threshold 246 are allocated to the local pool volume.
The data in the virtual pages currently allocated to remote
pool volumes is relocated to the local drives 113.

The virtual pages showing the local I/0 load equal to or
lower than the local threshold 246 are allocated to the local
pool volume or remote pool volumes. Specifically, the
processor 119 determines the virtual pages currently allo-
cated to remote pool volumes are to be kept allocated to the
remote pool volumes. The processor 119 determines
whether to relocate (rebalance) the data in the virtual pages
currently allocated to the local pool volume to other nodes
101 depending on the free space in the local pool volume.
The details will be described later.

FIGS. 24A and 24B each indicate a capacity limit 243, a
drive capability limit 244, and a network acceptance limit
245. The processor 119 determines the local threshold 246
so that the virtual pages allocated to the local pool volume
will be in the range below these limit values.

In this example, the processor 119 determines the page
1/O load at the intersection of the lowest value among the
capacity limit 243, the drive capability limit 244, and the
network acceptance limit 245 and the local I/O load curve
242 to be the local threshold 246. In FIG. 24A, the drive
capability limit 244 has the lowest value; in FIG. 24B, the
network acceptance limit 245 has the lowest value.

The capacity limit 243 is a limit of the capacity allowing
allocation to the local node. The capacity limit 243 is
determined from the local pool volume capacity and the
page size by a predetermined formula. The capacity limit
243 is determined so that the total size of all the virtual pages
allocated to the local pool volume will be equal to or smaller
than the local pool volume capacity. The local pool volume
capacity is the capacity of the pool volume formed of the
local drives 113.

The drive capability limit 244 is determined from the
access capability of the local pool volume and the total /O
load curve 241 by a predetermined formula. The access
capability of the pool volume is represented by, for example,
an [/O amount per unit time. The drive capability limit 244
is determined so that the total sum of the I/O loads to all the
virtual pages allocated to the local pool volume will be equal
to or lower than the access capability of the local pool
volume. The hatched area in FIG. 24A represents the total
sum of the I/O loads to all the virtual pages allocated to the
local pool volume.

The hatched area in FIG. 24B represents the total sum of
the 1/O loads to all the virtual pages allocated to the remote
pool volumes, that is, (total 1/O load-local /O load). The
network acceptance limit 245 is determined from the total
sum of the I/O loads to the remote virtual volumes and the
network capability by a predetermined formula. The net-
work capability is represented by, for example, an 1/O
amount per unit time.

When a virtual page is allocated to the local pool volume,
the node 101 receives remote accesses to the virtual page via
the network. Accordingly, the processor 119 determines the
network acceptance limit 245 so that the remote 1/0 load
will fall within the network capability.

The above-described local threshold determined based on
the drive capability and the network capability can minimize
the occurrence of bottleneck in data transfer in host I/Os.
The drive capability limit 244 is particularly effective to
minimize the occurrence of bottleneck in the network caused
by data located in remote nodes. It should be noted that the
capacity limit 243 is essential but the drive capability limit
244 and the network acceptance limit 245 do not need to be
used.

20

25

40

45

60

65

38

Next, the processor 119 reviews the pool volume con-
figuration in the pool (S233). The processor 119 has already
calculated the total capacity and the total I/O load for the
virtual pages (local virtual pages) to be allocated to the local
pool volume in each tier in determining the local threshold
at Step S232.

The processor 119 determines the number of pool vol-
umes 1303C to be mapped to remote pool volumes 1303B
based on the capacity and the capability of the local drives
113 in each tier. If the capacity and the capability of the local
drives 113 are insufficient for the total capacity or total /O
load of local virtual pages, the processor 119 increases pool
volumes 1303C.

Next, the processor 119 selects virtual pages of the virtual
volumes owned by the local node 101 one by one to repeat
execution of the following steps.

First, the processor 119 determines whether to relocate the
data in the virtual page from a remote pool volume to a local
pool volume (S234). Specifically, the processor determines
the tier for the virtual volume with reference to the overall
thresholds and further determines whether to allocate the
virtual page to the local pool volume with reference to the
local threshold. As described above, the processor 119
determines to allocate a virtual page with I/O load higher
than the local threshold to the local pool volume. The
processor 119 determines that a virtual page with [/O load
lower than the local threshold does not need to be allocated
to the local pool volume.

If the determination is to allocate the virtual page to the
local pool volume and if the virtual page is currently
allocated to a remote pool volume, the processor 119 deter-
mines to relocate the data of the virtual page from the remote
pool volume to the local pool volume.

If the determination is that the virtual page does not need
to be allocated to the local pool volume, or if the virtual page
is currently allocated to the local pool volume, the processor
119 determines that the data of the virtual page does not need
to be relocated to the local pool volume.

If the determination is that data relocation is necessary
(5234: Y), the processor 119 relocates the data of the virtual
page to the local pool volume (local drives 113) (S235). This
relocation includes necessary tier change of the virtual page.

The specific procedure includes the following steps. Step
1 stages the data to the local cache 181. Step 2 changes the
pool volume area corresponding to the virtual page in the
page mapping table 215 to the area in the local pool volume.

Step 3 destages the data to the local pool volume. Step 4
releases the cache area. Step 5 clears the page area of the
previously allocated remote pool volume (for example by
writing zero data) to free the area. That is to say, this step
connects this area to the free list 801 in the local area control
table 214 and reduces the used amount and the valid amount
in the local area amount table 802.

Each node 101 determines virtual pages to be relocated to
its local pool volume using its own local threshold. As a
result, even if a virtual page is owned by a plurality of nodes
101, one node to hold the virtual page can be determined.

For example, if a node 101 currently holding data of a
virtual page and another node 101 both determine to allocate
the virtual page to their own local pool volumes, the data is
relocated to the other node 101. Accordingly, the node 101
that is a node different from the node 101 holding data of the
virtual page and has last determined to allocate the virtual
page to its own local pool volume holds the data of the
virtual page.

If the determination is that relocating the data of the
virtual page to the local pool volume is not necessary (S234:

US 10,496,479 B2

39

N), the processor 119 determines whether tier change is
necessary (S236). In the case where the virtual page is
determined to be allocated to the local pool volume and is
currently allocated to the local pool volume, if the current
tier is different from the tier determined from the overall
thresholds, the processor 119 determines tier change is
necessary.

Ifthe determination is that tier change is necessary (S236:
Y), the processor 119 executes tier change (S237). The
specific method of the tier change can be implemented by
basically the same method of Step S235.

If the determination is that tier change is not necessary
(S236: N), the processor 119 determines whether rebalanc-
ing is necessary with the virtual page (S238). In this
example, rebalancing with a virtual page relocates the data
of the virtual page from the current pool volume to a remote
pool volume.

The processor 119 determines that rebalancing by allo-
cating the virtual page being processed to a remote pool
volume is necessary if determining that the virtual page does
not need to be allocated to the local pool volume and that the
pool volume currently allocated the virtual volume is
depleted.

The processor 119 refers to the local area amount table
802 of the tier and determines whether the area of the entry
associated with the virtual page is depleted (insuflicient). For
example, if the amount obtained by subtracting the valid
amount from the target amount is less than a threshold, the
processor 119 determines that the area is depleted.

If the determination is that rebalancing is necessary
(S238: Y), the processor 119 relocates the data of the virtual
page from the local pool volume (local node) to a remote
pool volume (remote node) (S239). The specific method of
page relocation in the rebalancing is implemented by basi-
cally the same method of Step S235.

The processor 119 makes inquiries to the other nodes 101
or acquires the local area amount tables 802 from the other
nodes 101 to select a node 101 having a sufficient area to
store the data of the virtual page as the transfer destination
node.

The determination whether a node 101 has a sufficient
area is based on the local area amount table 802 of the same
tier in the node. The transfer destination node 101 may be
selected from the owner nodes of the virtual page and the
nodes belonging to the stripe type of the virtual page, for
example.

If some unprocessed virtual page remains (S241: N), the
processor 119 returns to Step 234. When processing on all
the virtual pages has been completed (S241: Y), the proces-
sor 119 terminates the processing.

FIG. 25A is a flowchart of configuration change process-
ing. This processing is executed to change the configuration
of the distributed storage system. For example, when a new
resource is added to the distributed storage system, each
node executes this processing.

Upon start of this processing, the processor 119 alters the
static mapping table for each protection layer (S251). For
example, when a node is added, each node 101 in the site
protection layer increases the stripe types and changes the
data nodes and redundant code nodes of individual stripe
types. For example, one node 101 determines new node
configurations of individual stripe types and the other nodes
101 each update its static mapping table in accordance with
it.

20

25

30

40

45

60

65

40

The node 101 changes some of the stripe nodes of a part
of the stripe types in the current mapping table 211 into the
newly added node, and further, includes the some of the
nodes into a new stripe type.

FIG. 25B illustrates an example of adding a stripe type
and reallocating stripes when a node is added. The nodes
101A to 101D are existing nodes and the node 101E is the
added node. The rectangles in each node represent data
locations (addresses) of stripes and numerals in the rect-
angles indicate stripe type numbers. Stripe Type 1 to Stripe
Type 5 are existing stripe types and Stripe Type 6 is the
added stripe type.

Before the addition, the stripe addresses in the node 101E
do not belong to any stripe type; the rectangles are empty. In
the nodes 101A, 101C, and 101D or a part of the existing
nodes, the stripe types a part of their stripe addresses belong
to are changed to Stripe Type 6. A part of the stripe addresses
of the added node 101E are allocated to Stripe Types 2, 3,
and 4 that are changed in the existing nodes.

The distributing the stripes of one stripe type to different
nodes can increase the tolerance against a node failure. The
redundant code nodes are redetermined so that the used
amount for the site redundant codes Q will be balanced
among the added node and the existing nodes as well as
possible.

Although the foregoing example has described the case of
node addition, the configuration change processing can be
executed in the same way when a drive or a site is added.

Next, each node 101 recalculates the target amounts in the
local area amount table 802 (S252). For example, as shown
in the local area amount table 802 in FIG. 9, the recalcu-
lating the target amounts determines the target amounts for
individual site stripe types, for the redundant codes in
individual protection layers, and for the spare area. The
target amount for the redundant code in each protection layer
can be determined by, for example, the following formula in
accordance with a data protection policy (XDYP: Maximum
number of data units X, number of redundant codes Y)
specified by the user (which will be described with FIG. 27).

Target amount=Total capacityxMax(¥Y+Number of
resources, Y+(X+1)),

where Number of resources >Y

Total capacity is the total capacity of the local areas of the
node 101; Max (A, B) is the maximum value in A and B; and
Number of resources is the number of resources in the
protection layer. The number of resources in the node
protection layer is the number of drives in the node and the
number of resources in the site protection layer is the
number of nodes in the site.

For example, the target amount for the spare area is a fixed
value and the target amount for each site stripe type is an
equal division of the remaining amount in the total capacity.

Next, each node 110 executes rebalancing of redundant
codes (S253). This step is replacing the redundant codes
with respect to the differences in the static mapping table for
individual protection layers between before and after the
change. Specifically, each node 110 sends difference data (an
intermediate code) to the redundant code nodes and the
redundant code nodes update the old redundant codes with
the intermediate codes. Instead of rebalancing the redundant
codes, each node may store the previous static mapping
tables for the protection layers and hold the correspondence
relations of the redundant codes.

Lastly, the processor 119 of each node 110 executes
rebalancing and reallocation of pages (S254). This step
reallocates pages to the newly added node or drive. The

US 10,496,479 B2

41

specific method is the same as described with reference to
FIG. 23. If any of the determined target amounts for the
redundant codes and spare area cannot be attained, the target
amount may gradually be lowered using a known technique
such as feedback control. This configuration can control data
allocation to the nodes included in the system while con-
sidering the overall performance of the system.

FIG. 26 illustrates an example of a management I/F for a
command line. An application program 2601, an AP 2603,
and a storage apparatus 2602 implemented by software are
running on the same node 101.

The application program 2601 sends a command to the
storage apparatus 2602 through the API 2603 with designa-
tion of a virtual page in a virtual volume to be allocated to
a local logical page of the storage apparatus 2602. The
application program 2601 designates the virtual page with,
for example, a virtual volume number, an LBA, and a data
length. This combination enables page-by-page designation.

The storage apparatus 2602 determines the node having a
logical page allocated the designated virtual page with
reference to the page mapping table 215. If the virtual page
is allocated a logical page of a pool volume in a different
node and the data is stored in a drive of the different node,
the storage apparatus 2602 retrieves the data from the
different node, allocates the designated virtual page to a
logical page of the local pool volume, and stores the data to
a local drive. If no page is allocated to the storage area
designated by the aforementioned API 2603, the storage
apparatus 2602 stores data to a local drive when newly
allocating a page in accordance with a write request.

This configuration allows a logical page that will be used
by the application program 2601 locally next time to be
prepared in the local node in advance, achieving page
allocation optimum to the application.

The node 101 may receive the designation of a virtual
page in a virtual volume to be allocated to a local logical
page (local storage device) from a user via a user interface.
As described above, a virtual page is designated with an
identifier of a virtual volume and a logical address in the
virtual volume. Furthermore, the node 101 may receive an
instruction for allocation of a virtual page to a logical page
in a different node.

FIG. 27 illustrates an example of a management I/F for a
GUI in the distributed storage system. The GUI 2701 is an
interface for the user to provide various settings to the
distributed storage system. The node 101 accepts various
settings from the user through the input/output devices.

The GUI 2701 accepts designation of resources for indi-
vidual protection layers (2702A to 2702C) to enable hier-
archical settings. For example, when a site A (2702A) is
designated, the GUI 2701 accepts selection of nodes
(2702B) in the designated site. When a node is designated,
the GUI 2701 accepts settings on the volumes (2702C) in the
designated node.

The items commonly set to the sites, nodes, and volumes
are described. The network performance is information on
network bandwidth. When AUTO is selected, each node 101
automatically determines a network bandwidth using the
result of measurement of the network bandwidth. If the user
specifies it, each node uses the specified network bandwidth
in determining page allocation.

The failure threshold indicates the number of errors in, for
example, communications to the resource, to determine the
resource is failed. The takeover specifies a resource to take
over the resource when a failure occurs in the resource. A

10

15

20

25

30

35

45

50

55

60

65

42

plurality of resources can be selected. If the user does not
specify the resource to take over, the storage system may
automatically select it.

The settings allowing protection layer-specific specifica-
tion include protection policy. The data protection policies
(XDYP: Maximum number of data units X, Number of
redundant codes Y) for individual protection layers can be
specified. If the number of nodes is less than X+Y, or if
storage capacities are different among the resources, the
storage system uses a proximate value in the real configu-
ration.

The settings allowing virtual volume-specific specifica-
tion include SYNC/ASYNC information. Either synchro-
nous copy or asynchronous copy can be selected for each
virtual volume. Further, disabling copy can be selected for
each protection layer.

For example, assume that the geo protection layer may be
set to copy disabled. Then, virtual volumes cannot be rebuilt
at a site failure and the rebuilding at a site failure is skipped.
As understood from this example, operations to asynchro-
nously copy important data and to synchronously copy more
important data are available among sites.

The cache mode provides a choice of “write” or “write
back”. The write mode reflects write data to the drive
simultaneously with storing write data to the cache and
reports the completion of write to the host (application
program). The write back mode reports the completion of
write to the host (application program) after storing write
data to the cache.

Specifying the use node determines the nodes to mount
the virtual volume. This setting is reflected to the virtual
volume management table 218.

FIG. 28 illustrates an example of hardware configuration
of a distributed storage system. The difference from the
configuration example shown in FIG. 1 is that a backend
switch 2801 is shared by a plurality of nodes 101. The drives
113 shared through the backend switch 2801 can be accessed
from the nodes 101 sharing the backend switch 2801 not via
another node and the drives 113 are the local drives managed
by these nodes 101. Hence, one drive 113 can be included in
a plurality of nodes 101 through the backend switch 2801.

In the case of shared backend configuration, the shared
range may be defined as a domain to implement multidi-
mensional data protection in a domain and among domains.
Alternatively, depending on the transfer bandwidth, an area
having a comparatively wide bandwidth may be defined as
a domain.

Embodiment 2

FIG. 29 illustrates a technique for improving efficiency in
data transfer among nodes to implement redundancy. In the
above-described technique, the amount of data to be trans-
ferred increases in proportion to the redundancy level for the
amount of data to be written to a node. For example, to
enable data recovery when two nodes are failed in the
example of FIG. 1, write data is transferred from one node
to the cache memories 181 of two nodes.

For example, the write data DATAL (1501A) written to
the node 101A is transferred to the cache memories 181 of
the node 101B and the node 101D. That is to say, this
example generates network transfer twice as much as the
amount of data written to a node. Hereinafter, a technique to
reduce the transfer for redundant code creation in other
nodes is described.

FIG. 29 illustrates an example where four nodes of the
nodes 101A to 101D protect data with a 2D2P-redundancy

US 10,496,479 B2

43

configuration. That is to say, this system has redundancy
capable of recovering all data when two nodes are failed.

For example, the node 101A divides received write data
having a long data length into two blocks (d1 and d2 blocks)
2901 and 2902 and further, creates two parities (p and q
parities) 2903 and 2904 as in-node redundant codes. The
parities are also data blocks. Data block is a generic term
including data unit. The p parity 2901 and the q parity 2902
are primary redundant codes (Class 1 codes). Next, the node
101A distributes copies of the write data and the parities to
the caches (buffers) of the nodes 101B to 101D. A plurality
of data blocks combined together may constitute a data
block.

This embodiment distributes copies of one write data
block (d2 block) 2902 and two parities (p and q parities)
2903 and 2904 to three nodes 101B to 101D. When the
copies have been distributed, synchronous write processing
is completed because required redundancy is attained (data
recovery is available when two nodes are failed).

Likewise, each of the nodes 101B to 101D divides
received write data into two blocks (d1 and d2 blocks) and
creates p and q parities. Each of the nodes 101B to 101D
distributes copies of one write data block (d2 data block) and
two parities (p and q parities) to the caches (buffers) of the
other three nodes. Each node stores a data block (write data
or a parity) received from each of the other three nodes to the
cache.

Each of the nodes 101A to 101D asynchronously creates
secondary redundant codes (x1 and y1 parities) from the
data blocks (each of them is write data or a parity) gathered
from the other three nodes, writes them to the local drive,
and releases the cache. These redundant codes (x1 and y!
parities) are referred to as Class 2 codes. The Class 2 codes
correspond to redundant codes explained with FIG. 1.

For example, the node 101C receives a p parity 2903 from
the node 101A, a q parity 2905 from the node 101B, and a
q parity 2906 from the node 101D. The node 101C creates
an x1 parity 2908 and a y1 parity 2909 from them, writes the
x1 parity 2908 and the y1 parity 2909 to the local drive, and
releases the cache.

In addition, each of the nodes 101A to 101D writes write
data (d1+d2) to the local drive and releases the cache. For
example, the node 101A writes a d1 block 2901 and a d2
block 2902 to the local drive and releases the cache.

The example of FIG. 1 transfers write data (d1+d2) to
other two nodes to enable data recovery when two nodes are
failed. In contrast, this embodiment transfers a part (d2) of
the write data and primary redundant codes (p and q parities)
created from the write data to other nodes. Accordingly, this
embodiment achieves efficiency in data transfer among
nodes while maintaining the required redundancy. Mean-
while, all the data (d1+d2) of a stripe is stored in the local
drive.

Although FIG. 29 provides an example of a 2D2P-
redundancy configuration, the technique of this embodiment
is applicable to any mDnP configuration (m and n are natural
numbers). The write data (mD) is stored in the local drive
and data in a redundancy level of the number reduced by one
(a redundancy level of n-1) is transferred to other nodes.

For example, in a 3D2P (d1, d2, d3, p, q) configuration,
the write data (d1+d2+d3) are stored in the local drive and
data blocks d2, d3, p, and q are transferred to different other
nodes. The combination of data blocks to be transferred is
not limited to this; for example, data blocks d1, d2, d3, and
p may be transferred to other nodes.

Combining the technique of this embodiment with the
technique of Embodiment 1, which dynamically selects a

5

10

15

20

25

35

40

45

50

55

60

65

44

stripe from one stripe type of stripes, creates redundant
codes from the selected stripe, and stores the information on
the redundant codes in the form of metadata (for example,
the log-structured mapping table 213), reduces the fre-
quency of read-modify-write and the amount of data trans-
ferred in the network, achieving high performance in write
processing. The technique of this embodiment is applicable
to a system having a plurality of protection layers described
prior to this embodiment.

In the cases where the data length of the received write
data is short (for example, in the cases of random write), data
transfer to implement the redundancy less affects the net-
work bandwidth. Accordingly, the redundancy implementa-
tion processing of this embodiment may be executed only
when the data length is longer than a threshold (or sequential
write). In the cases where the data length is shorter than the
threshold, the technique in FIG. 1 can be applied.

As a result, the load to the processor and the usage of the
network bandwidth can be improved. In this case, the system
adds information indicating whether the technique of creat-
ing Class 2 codes is applied to the metadata (for example, the
log-structured mapping table 213) to switch the method of
data processing in accordance with this information. Alter-
natively, the system may write Class 1 codes to the local
drive as in-node parities to improve the efficiency in parity
creation processing,.

FIG. 30 illustrates a data restoration method in the tech-
nique for improving efficiency in data transfer among nodes
to implement redundancy in Embodiment 2 described with
reference to FI1G. 29. FIG. 30 illustrates an example of
restoring write data when the node 101A and 101B are
failed.

The nodes 101C and 101D each restore the Class 1 codes
from the Class 2 codes and further, restore the user data of
the nodes 101A and 101B from the Class 1 codes.

Specifically, the node 101C restores the p parities of the
nodes 101A and 101B from the q parity of the node 101D
acquired from the node 101D and the x1 and y1 parities in
the local storage. The node 101D creates a q parity of the
node 101D from the user data (local user data) of the node
101D (the q parity stored in the local storage can be used, if
it exists).

The node 101D restores the q parities of the node 101A
and 101B from the q parity of the node 101C acquired from
the node 101C and the x1 and y1 parities in the local storage.
The node 101C creates a q parity of the node 101C from the
user data of the node 101C.

Further, the node 101C restores the user data d1 and d2 of
the node 101A from the q parity of the node 101A acquired
from the node 101D and the restored p parity of the node
101A. The node 101D restores the user data d1 and d2 of the
node 101B from the p parity of the node 101B acquired from
the node 101C and the restored q parity of the node 101B.
In this way, the write data can be recovered through two-step
restoration.

Embodiment 3

Off-Loading Log Structuring (to Drive)+Parity Creation (to
Drive)

FIG. 31 illustrates an example of a hardware configura-
tion of a distributed storage system. The main difference
from the configuration example in FIG. 3 is that the backend
port of the computer node 101 connected with the network
104 is connected with a plurality of flash drives 3105 via a
virtual or physical network 103. One site includes one or
more computer nodes 101.

US 10,496,479 B2

45

Each computer node 101 is capable of communicating
with each of the flash drives 3105 via the network 103
without mediation by any other computer node to use the
flash drives 3105 as local drives. One flash drive 3105
communicates with only one computer node 101.

The backend network 103 may connect a plurality of
computer nodes 101; the computer nodes 101 connected by
the backend network 103 communicate with one another
using the backend network 103. The nodes not connected by
the backend network 103 communicate with one another
using an external network 104, for example.

Each flash drive 3105 of an example of a storage drive
includes an I/F 3101 for connecting to the computer node
101, a buffer memory 3102 for storing data on a temporary
basis, an internal processor 3103 for controlling the flash
drive 3105, and a plurality of flash memories 3104 for
storing data.

Overview

FIG. 32 illustrates an overview of this embodiment. This
embodiment performs parity creation processing and data
storage processing using a log-structured scheme within the
flash drives. As a result, the computer node performs write
processing without concerning the creation of redundant
codes or the log-structured scheme; the time required for the
write processing can be reduced.

A computer node 101 determines the drives to store write
data and redundant codes using a static mapping table (for
example, the site static mapping table 211) described in
Embodiment 1, for example. Instead of the computer nodes
in Embodiment 1, drives are determined. For example, two
D drives 3219, a P1 drive 3220, and a P2 drive 3221 in FIG.
32 correspond to data drives and redundant code drives for
one stripe type.

For example, the computer node 101 selects an entry of
the static mapping table based on the access destination (for
example, the volume identifier and the in-volume address)
of the write data designated by the host and determines the
drives specified in the entry to be the drives to store the write
data and redundant codes. In the case where the site pro-
tection layer is provided, the computer node 101 transfers
the write data to a computer node 101 in a different site. The
host program may run on the computer node 101.

For example, in writing write data to a drive, the computer
node 101 writes data to a drive (D drive) 3219 for storing
write data and a drive (P1 drive) 3220 for storing the main
parity (double write). In this operation, the computer node
101 performs a write to the D drive 3219 using a normal
write command (D_WRITE) (3210) to write the data to the
medium ([.BA area) 3204 through the data buffer 3202 of the
D drive 3219.

The computer node 101 issues a parity write command
(P_WRITE) to the P1 drive 3220 and writes the data
together with the storage location information of the data
stored in the D drive 3219 (3211). After writing the data to
the parity creation buffer 3203, the P1 drive 3220 creates a
P1 parity 3207 within the drive and writes the P1 parity 3207
1o the medium 3204.

As described about creating a redundant code for a stripe
type in Embodiment 1, the P1 drive 3220 dynamically
combines data blocks written to the parity creation buffer
3203 to create a P1 parity 3227. The P1 drive 3220 writes the
storage location of the data used to create the P1 parity 3207
to the metadata storage area 3205 as metadata 3209.

For example, in the case where the number of parities is
wo, the computer node 101 writes data to the drive (P2
drive) 3221 to store the second parity or sub parity (P2
parity), in addition to the D drive 3219 and the P1 drive 3220

5

20

25

35

40

45

50

60

65

46
(triple write). The P2 drive 3221 stores data to the parity
creation buffer 3203 and dynamically combines the data
blocks written to the parity creation buffer 3203 to create a
P2 parity 3227, like the P1 drive 3220.

In creating a P2 parity, the combination of data blocks for
the P2 drive 3221 to create the parity should be identical to
the combination of data blocks for the P1 drive 3220 to
create a parity. After creating a P1 parity, the P1 drive 3220
notifies the P2 drive 3221 of the combination of data blocks
used to create the P1 parity (P_GET. P_PUSH) through the
computer node 101 (3215). The P2 drive 3221 then creates
a P2 parity using the specified combination of data blocks.

In reading some latest data, the computer node 101
retrieves the latest data 3206 from the D drive 3219 with a
normal read command (D_READ) (3212). In reading some
old data 3208, the computer node 101 retrieves the old data
3208 from the D drive 3219 with a read command
(OLD_D_READ) to retrieve the old data 3208 (3213).

The computer node 101 monitors the usage (free space) of
the drives 3219 to 3221 to preserve the area to be written in
the log-structured scheme and executes garbage collection
processing as needed. The space management job 3201 of
the computer node 101 issues a command (STAT_GET) to
acquire the usage (free space) of the drives upon completion
of a write or periodically to monitor and detect the usage of
the drives (free space of the drives) (3214). When the usage
is higher than a threshold (the free space is smaller than a
threshold) and depletion of the free space of a drive is
detected, the computer node 101 executes garbage collection
processing.

The garbage collection processing issues a command
(SEARCH) to detect a parity to be deleted to the P2 drive
3221 (3218) and acquires information on the storage loca-
tion of the parity to be deleted and information on the data
used to create the parity to be deleted from the drive 3221.
Next, the processing determines whether each data block
used to create the parity is latest data with reference to parity
source-data information, forwards the latest data to the P1
drive 3220, and returns the data into a dirty state. The parity
source-data information indicates information on the data
blocks used to create the parity. After returning all the latest
data used to create the parity into a dirty state, the processing
deletes the parity, issues a command (INVALID) for invali-
dating old data (3217), and deletes the old data.

Data Management Structure within Drive

FIG. 33 illustrates structures of tables managed by the
drive 3105 for controlling the storage system. A flash
memory 3104 stores a logical/physical (L/P) conversion
table 3301 including information on the log structure, a log
conversion table 3304, a parity-data (P-D) conversion table
3307, a data-parity (D-P) conversion table 3308, and an
address identifier free queue 3309.

The logical/physical conversion table 3301 indicates cor-
respondence relations between logical addresses 3302 pro-
vided by the drive 3105 to the computer node 101 and
physical addresses 3303 of the data stored in the physical
storage area.

The log conversion table 3304 indicates correspondence
relations between address identifiers 3305 for uniquely
identifying data and log information 3306 storing logical/
physical conversion information. Each time data is written
to the drive 3105, the drive 3105 creates log information
with updated logical/physical conversion information and
assigns an address identifier to the log information for
management. The information on source data of a parity
stored in a different drive is held with the address identifier.

US 10,496,479 B2

47

This management eliminates the drive 3105 from notify-
ing the other drives of a change of the physical address of
data stored in the local drive even if such a change happens
because of garbage collection processing or wear leveling
processing performed by the drive 3105, achieving low
overhead for the comnmunications among drives.

The parity-data conversion table 3307 indicates the cor-
respondence relations between the addresses (LBAs and
data lengths) of the physical storage areas of parities in the
local drive and addresses (drive numbers, LBAs, data
lengths, and address identifiers) of the physical storage areas
of data in other drives used to create the parities.

Since a parity is created by operations on a plurality of
data blocks, one parity is associated with a plurality of
logical addresses of data storage locations in other drives.
Furthermore, since the data is stored in the log-structured
scheme, data on logical addresses may include an address of
old data. For this reason, an address identifier is stored
together to uniquely locate the data used to create a parity.

The data-parity conversion table 3308 is an inverse con-
version table of the above-described parity-data conversion
table. The data-parity conversion table 3308 indicates the
correspondence relations between the addresses (LBAs and
drive numbers) of physical storage areas in other drives
holding data and the addresses of physical storage areas in
the local drives holding parities.

When a failure occurs in a different drive and requires
data restoration, the drive 3105 locates the addresses of the
physical storage areas holding the parities required to restore
the data in the different drive with reference to the data-
parity conversion table 3308. Furthermore, the drive 3105
locates the addresses of the physical storage areas of other
drives holding the data required for the data restoration with
reference to the parity-data conversion table 3307.

The address identifier free queue 3309 is a queue to be
used to perform concurrent write processing and holds
unused address identifiers. The concurrent write processing
will be described later. In writing data, the computer node
101 acquires (dequeues) an address identifier from the head
of the address identifier free queue 3309 and issues a data
write to the drive 3105 together with the address identifier.

The drive 3105 stores log information to the log conver-
sion table 3304 with the assigned address identifier. When
some old data is invalidated, the computer node 101 regis-
ters (enqueues) the invalidated address identifier to the tail
of the address identifier free queue 3309.

List of Interfaces

FIG. 34 is a list of communication interfaces between a
computer node 101 and a flash drive 3105. A D_WRITE
command 3401 includes the drive number of a D drive 3219,
an LBA, and a transfer data length as arguments and
performs a write to the D drive 3219. After performing the
write, an address identifier or metadata in the log structure
is output.

The address identifier is an invariable identifier associated
with data stored in a drive. Specifically, the address identifier
is an identifier unique to the drive assigned to mapping
information between a logical address and a physical
address in the drive.

AP WRITE command 3402 includes the drive number of
a P1 drive 3220 or a P2 drive 3221 to store a parity, a transfer
data length, and data storage information as arguments and
performs a write to the drive. The data storage information
consists of the drive number of a D drive, an LBA, and an
address identifier.

A D_READ command 3403 includes a drive number, an
LBA, and a transfer data length as arguments and retrieves

20

25

40

45

60

65

48

latest data from the D drive 3219. An OLD D READ
command 3404 includes a drive number, an address identi-
fier, and a transfer data length as arguments and retrieves old
data from the D drive 3219.

A P_GET command 3405 includes the drive number of a
P1 drive as an argument and outputs parity source-data
information on a parity which is created in asynchronous
destage processing but the P1 drive 3220 specified by the
argument has not notified the P2 drive 3221 of the parity
source-data information thereon. The parity source-data
information consists of the drive numbers of D drives,
LBAs, and address identifiers of the data blocks used to
create the parity.

A P_PUSH command 3406 includes the drive number of
a P2 drive 3221 and parity source-data information as
arguments and notifies the P2 drive 3221 of the parity
source-data information. The parity source-data information
consists of the drive numbers of D drives, LBAs, and
address identifiers.

A STAT GET command 3407 includes a drive number as
an argument and outputs information on the usage of the
drive specified by the argument. The STAT_GET command
3407 is used to check for capacity depletion in a drive. An
INVALID command 3408 includes the drive number of a D
drive 3219 and an address identifier as arguments and
invalidates unnecessary old data in garbage collection pro-
cessing.

A SEARCH command 3409 requests a P2 drive 3221 to
detect a parity to be deleted in garbage collection processing
and outputs information on the parity to be deleted and
parity source-data information on the parity to be deleted as
a search result. The information on the parity to be deleted
consists of the drive number of the P2 drive 3221 and an
LBA,; the parity source-data information on the parity to be
deleted consists of the drive numbers of the D drives, LBAs,
address identifiers, and information on whether the indi-
vidual source data blocks are latest data or not.

The computer node 101 communicates with the drives
3105 using the above-described commands to perform pro-
cessing.

Read Processing
Reading Latest Data

FIG. 35 is a flowchart of read processing for a computer
node 101 to retrieve latest data from a D drive 3219. This
processing is executed in response to receipt of a read
request from a host (S3501).

The processor 119 of the computer node 101 that has
received a read request from a host checks whether the cache
includes the data (S3502). If the cache includes the data
(53502: Y), the processor 119 returns the data in the cache
to the host (S3510).

If the cache does not include the data (S3502: N), the
processor 119 reserves the cache (S3503) and thereafter,
issues a D_READ command to the D drive 3219 (S3504).

Upon receipt of the D_READ command (S3505), the D
drive 3219 acquires the physical address holding the data
with reference to the logical/physical conversion table 3301
(53506). Next, the D drive 329 reads the data from the flash
memory (medium) 3104 (53507) and returns the result to the
computer node 101 (S3508). Upon receipt of the result of the
D_READ from the D drive 3219, the computer node 101
returns the result to the host (83510).

Reading Old Data

FIG. 36 illustrates read processing to retrieve old data. In
reading old data, the computer node 101 first issues an
OLD_D_READ command to the D drive 3219 (S3601).
Upon receipt of the OLD_D_READ command (S3602), the

US 10,496,479 B2

49

D drive 3219 acquires the physical address holding the old
data corresponding to the designated address identifier from
the log conversion table 3304 (S3603).

Next, the D drive 3219 reads the old data from the flash
memory (medium) 3104 (S3604) and returns the result to the
computer node 101 (S3605). The computer node 101
receives the result of the OLD D _READ from the D drive
(836006).

Write Processing

FIG. 37 is a flowchart of write processing for a computer
node 101 to write data to a D drive 3219. The write
processing includes two phases of processing. One phase is
synchronous write processing until returning a write result to
the host. The other phase is asynchronous write processing
to create parities from data accumulated in the parity cre-
ation buffers in the drives and store the parities to media.

First, the synchronous write processing is described. This
processing is executed upon receipt of a write request from
the host. This processing stores write data to the D drive
3219 and further, writes the data to the drives (the P1 drive
3220 and the P2 drive 3221) to create parities together with
an address identifier.

Upon receipt of a write request from the host (S3701), the
processor 119 of the computer node 101 issues a D_WRITE
command to the D drive 3219 (S3702). The D_WRITE
command includes write data. Upon receipt of the
D_WRITE command, the D drive 3219 writes the write data
to a flash memory (medium) 3104 in accordance with the
log-structured scheme (S3704) and further, the D drive 3219
updates the metadata (the logical/physical conversion table
3301 and the log conversion table 3304) (53705). The D
drive 3219 returns the address identifier of the data storage
location to the computer node 101 (S3706).

Upon receipt of the result of the D_WRITE from the D
drive 3219 (S3707), the computer node 101 issues a
P_WRITE command to the P1 drive 3220 together with the
data storage information in the D drive 3219 (S3708).

Upon receipt of the P_WRITE command (83709), the P1
drive 3220 stores the write data to the parity creation buffer
3203 of the drive (S3710), and returns the result to the
computer node 101 (S3711).

Upon receipt of the result of the P_WRITE command
from the P1 drive 3220 (S3712), the computer node 101
issues a P_WRITE command to the P2 drive 3221 together
with the data storage information in the D drive 3219
(83713).

Upon receipt of the P_WRITE command (S3714), the P2
drive 3221 stores the write data to the parity creation buffer
3203 (S3715), and returns the result to the computer node
101 (S3716). Upon receipt of the result of the P_WRITE
command from the P2 drive 3221 (S3717), the computer
node 101 returns a result to the host (S3718).

When the foregoing synchronous write processing is
repeated, a predetermined number of data blocks are accu-
mulated in the parity creation buffer 3203 of the P1 drive
3220. In response to this event, or when a predetermined
time has elapsed, the P1 drive 3220 executes asynchronous
write processing within the drive (S3719).

First, the P1 drive 3220 dynamically selects data blocks
from the data accumulated in the parity creation buffer 3203
and creates a P1 parity (S3720). Next, the P1 drive 3220
updates the metadata (the parity-data conversion table 3307
and the data-parity conversion table 3308) (S3721) and
writes the P1 parity to a flash memory (medium) 3104
(83722).

Subsequently, the computer node 101 acquires, by a
P_GET command, the parity source-data information on the

15

20

25

30

35

40

45

50

55

60

65

50
P1 parity from the P1 drive 3220 (S3723, S3724). The
computer node 101 notifies the P2 drive 3221 of the parity
source-data information acquired from the P1 drive 3220
with a P_PUSH command (S3725).

Upon receipt of the P_PUSH command from the com-
puter node 101, the P2 drive 3221 creates a P2 parity based
on the received parity source-data information (S3726),
updates the metadata (the parity-data conversion table 3307
and the data-parity conversion table 3308) (S3727), and
writes the P2 parity to a flash memory (medium) 3104
(53728).

FIG. 38 is a flowchart of the processing in the case of
concurrently executing data writes to the drives in the
synchronous write processing. The difference from FIG. 37
is that the computer node 101 does not wait a response from
the D drive 3219 and issues write commands to the parity
creation drives 3220 and 3221 with designation of the
address identifier to be used.

For the write to the D drive 3219, aD_WRITE2 command
3805 for assigning an address identifier and requesting a
write is used, instead of a D_WRITE command 3401. The
D_WRITE2 command 3805 includes the drive number of a
D drive 3219, an LBA, a transfer data length, and an address
identifier as arguments and is to perform a write to the D
drive 3219.

Upon receipt of a write request from the host (S3701), the
computer node 101 acquires an address identifier from the
head of the address identifier free queue 3309 (S3801) and
updates the head pointer in the address identifier free queue
3309 (S3802). Next, the computer node 101 issues a
D_WRITE2 command including the acquired address iden-
tifier as an argument to the D drive 3219 (S3803).

The computer node 101 further issues P_WRITE com-
mands including the acquired address identifier in the data
storage information to the P1 drive 3220 and the P2 drive
3221 (S3708, S3713).

The D drive 3219 stores log information under the
assigned address identifier to the log conversion table 3304.
The P1 drive 3220 and the P2 drive 3221 each perform the
same processing as the processing in FIG. 37 and then return
the result to the computer node 101 (S3703 to S3706, S3709
to S3711, and S3714 to S3716).

The computer node 101 stands by until receiving the
results from all the drives 3219 to 3221 (S3804). Upon
receipt of the results from all the drives 3219 to 3221, the
computer node 101 returns a result to the host (S3718).

Each of the P1 drive 3220 and the P2 drive 3221 asyn-
chronously creates a parity and stores the parity to the flash
memory (medium) 3104, like in the processing described
from S3719 to S3728 of FIG. 37. The above-described
concurrent write processing to the drives achieves a shorter
response time to the host.

Garbage Collection Processing

FIG. 39 is a flowchart of the garbage collection process-
ing. This processing erases unnecessary data when the
amount of data stored in a drive exceeds a predetermined
target amount (threshold). As a result, necessary data can be
stored 1n a limited area. The kinds of data to be erased are
write data and parity. This processing may be executed
either synchronously or asynchronously with a host [/O.

The computer node 101 checks whether the usage of a D
drive 3219 is higher than a target amount (S3901). Specifi-
cally, the computer node 101 makes determination depend-
ing on whether the usage is higher than the target amount
with reference to the monitoring result of the space man-

US 10,496,479 B2

51

agement job 3201. The monitoring result of the space
management job 3201 may be managed with the local area
amount table 802.

If the drive usage is higher than the target amount (S3901:
Y), the computer node 101 starts garbage collection pro-
cessing. In the garbage collection processing, the computer
node 101 issues a SEARCH command to detect a P1 parity
to be deleted to each of the P1 drives 3220 holding the P1
parities created from data in the D drive 3219 where capacity
depletion is detected.

Upon receipt of the SEARCH command, the P1 drive
3220 searches for the P1 parities having the drive number
specified by the argument in the parity source-data infor-
mation with reference to the parity-data conversion table
3307. Upon detection of such a P1 parity, the P1 drive 3220
checks whether the data of the detected result is old data
with reference to the data-parity conversion table 3308.

If the data is found old data, the P1 drive 3220 determines
that the P1 parity is to be deleted. Next, the P1 drive 3220
checks whether each source data blocks used to create the P1
parity is new or old with reference to the data-parity con-
version table 3308 and returns the result (the parity to be
deleted and the parity source-data information on the parity
to be deleted) to the computer node 101 (S3902).

The computer node 101 acquires the information whether
each source data block of the P1 parity is new or old from
the returned parity source-data information on the parity to
be deleted and determines whether the P1 parity to be
deleted can be deleted immediately (S3903). If all the source
data blocks of the P1 parity are old data (S3903: Y), the
computer node 101 deletes the P1 parity (S3906), and
further, deletes the source data blocks of the P1 parity from
the D drives 3219 of the data storage locations with
INVALID commands (S3907).

In the case of employment of the concurrent write pro-
cessing, the computer node 101 registers (enqueues) the
invalidated address identifiers to the tail of the address
identifier free queue 3309 upon receipt of the results of the
INVALID commands. The computer node 101 further
instructs the P2 drive 3221 to delete the P2 parity created
from the identical combination of data blocks.

If the source data blocks of the P1 parity include a data
block of latest data (S3903: N), the computer node 101 reads
the latest data from the D drive 3219 with a D_READ
command and writes it to the P1 drive 3220 and the P2 drive
3221 together with data storage information with P_WRITE
commands (S3905, S3908).

After writing, the computer node 101 deletes the old P1
parity and the old P2 parity from the P1 drive 3220 and the
P2 drive 3221 (S3906, S3909), and deletes old data from the
D drives 3219 with INVALID commands (S3907). The
computer node 101 repeats the foregoing processing to
delete parities and data.

Meanwhile, the P1 drive 3220 creates a new P1 parity,
updates the metadata, and stores the new P1 parity to the
flash memory (medium) 3104 in accordance with the asyn-
chronous write processing described in FIG. 37. Likewise,
the P2 drive 3221 creates a new P2 parity, updates the
metadata, and stores the new P2 parity to the flash memory
(medium) 3104 in accordance with the asynchronous write
processing.

10

15

20

25

30

35

40

45

50

55

60

65

52

Embodiment 4

Off-Loading Log Structuring (to Drive)+Parity Creation (to
Controller)

FIG. 40 illustrates an example of a hardware configura-
tion of a distributed storage system. The difference from
Embodiment 3 is that the computer node 101 includes a
parity creation unit inside thereof. The parity creation unit
can be implemented by hardware or software. The storage
system includes a plurality of computer nodes 101 and each
computer node 101 includes a parity creation unit 4006
having a function to create a parity inside thereof.

Each computer node 101 is connected with host comput-
ers 4001 via a frontend network 4002; the computer nodes
101 are connected with each other via an internal network
4003; and the computer nodes 101 are connected with the
drives via a backend network 4004. A plurality of computer
nodes 101 can access one drive 3105.

Overview

FIG. 41 illustrates an overview of this embodiment. The
difference from Embodiment 3 is that the P1 drive 3220 and
the P2 drive 3221 do not need to create parities asynchro-
nously with I/O because the parities are created by the
computer node 101. Accordingly, in the case of two or more
parities, it is not necessary to inform the P2 drive 3221 of the
parity source-data information on the P1 parity; the process-
ing load to the computer node 101 and the drives 3219 to
3221 and the write processing time can be reduced.

Specifically, write processing stores data received from a
host to a parity creation buffer 4101 in the computer node
101 and the parity creation buffer 4101 requests the parity
creation unit 4006 to create parities (4101). Then, the parity
creation unit 4006 creates parities and writes the created
parities to the drives to store the parities (4102).

The difference from Embodiment 3 in garbage collection
processing is that, if the source data of the parity to be
deleted include latest data, the latest data retrieved from the
D drive 3219 is transferred to the parity creation unit 4006
to create a new parity. Read processing is the same as the
read processing in Embodiment 3.

List of Interfaces

FIG. 42 is a list of communication interfaces between a
computer node 101 and each of the drives 3219 to 3221. In
place of the P_WRITE command 3402 in Embodiment 3, a
P_WRITE2 command 4201 is provided.

The P_WRITE2 command 4201 includes a drive number,
an LBA, a transfer data length, and an array of parity
source-data information as arguments and is to write a parity
to a drive. The parity source-data information consists of a
drive number, an LBA, and an address identifier. That is to
say, the P_WRITE2 command 4201 writes a plurality of data
storage locations as the parity source-data information to a
drive together with a parity.

Write Processing
Synchronous Write Processing

Write processing in this embodiment includes synchro-
nous write processing and asynchronous write processing
like the write processing in Embodiment 3. FIG. 43 is a
flowchart of the synchronous write processing in this
embodiment. Upon receipt of a write request from a host
(S4301), a computer node 101 issues a D_WRITE command
to the D drive 3219 (84302).

Upon receipt of the D_WRITE command (S4303), the D
drive 3219 writes data to a flash memory (medium) 3104
(54304), updates the metadata (the logical/physical conver-
sion table 3301 and the log conversion table 3304) (S4305),
and returns a result (an address identifier) to the computer
node 101 (S4306).

US 10,496,479 B2

53

Upon receipt of the result from the D drive 3219 (S4307),
the computer node 101 stores the data to the parity creation
buffer 4101 in the computer node 101 (S4308) and returns
a result to the host (S4309).

The synchronous write processing may concurrently per-
form the data write to the D drive 3219 and the data storage
to the parity creation buffer 4101 by using the address
identifier free queue 3309 and a D_WRITE2 command 3805
as described with reference to FIG. 38.

Asynchronous Write Processing

FIG. 44 is a flowchart of the asynchronous write process-
ing in this embodiment. When the foregoing synchronous
write processing is repeated, a predetermined number of data
blocks are accumulated in the parity creation buffer 4101. In
response to the event, or when a predetermined time has
elapsed, the computer node 101 performs asynchronous
write processing (S4401).

The main controller 4405 of the computer node 101
selects data to be used to create a parity from the data
accumulated in the parity creation buffer 4101 and transfers
the data to the parity creation unit 4006 (S4402). The main
controller 4405 is implemented by the processor 119 oper-
ating in accordance with a program, for example. Upon
receipt of the data (S4403), the parity creation unit 4006
stores the received data to an internal buffer thereof (S4404).

Subsequently, the parity creation unit 4006 creates a P1
parity and a P2 parity using the received data (S4405) and
transfers the created parities to the main controller 4405
(S4406).

Upon receipt of the P1 parity and the P2 parity from the
parity creation unit 4406 (S4407), the main controller 4405
writes the P1 parity and the P2 parity to the P1 drive 3220
and the P2 drive 3221 together with the parity source-data
information using a P_WRITE2 command (54408).

Upon receipt of the P_WRITE2 command (54409), the
P1 drive 3220 writes the parity to a flash memory (media)
3104 (S4410), updates the metadata (the parity-data conver-
sion table 3307 and the data-parity conversion table 3308)
(S4411), and returns a result to the computer node 101
(S4412).

The P2 drive 3221 performs the same processing as the P1
drive 3220 and returns a result to the computer node 101
(S4413 to S4416). Upon receipt of the results from the P1
drive 3220 and the P2 drive 3221, the main controller 4405
terminates the processing (S4417).

Garbage Collection Processing

FIG. 45 is a flowchart of garbage collection processing in
this embodiment. Steps S4201 to S4204 and S4207 corre-
spond to Steps S3901 to S3904 and S3907.

The main difference from Embodiment 3 is that latest data
in the data used to create the parity to be deleted is stored to
the parity creation buffer 4101 in the computer node 101
(S4501). This configuration eliminates rewriting data to a
drive as performed in Embodiment 3, improving the perfor-
mance in the garbage collection processing. Steps S4501
and S4206 are performed in the P1 parity drive and the P2
parity drive.

When a predetermined number of data blocks are accu-
mulated in the parity creation buffer 4101 or when a pre-
determined time has elapsed, the computer node 101 per-
forms asynchronous write processing described with FIG.
44, creates new parities, and writes the parities to the drives.

In the foregoing embodiments, correspondence relations
in addressing between redundant codes and data are man-
aged in each node. In another example, the system may
prepare two kinds of virtual spaces and dynamically change
the correspondence relations of the virtual spaces to imple-

10

15

20

25

30

40

45

60

65

54

ment the data protection technique. Specifically, the system
prepares a first virtual space to be provided to upper logical
apparatuses and a second virtual space statically associated
with the storage addresses in the physical storage area of
redundant codes and data. The system dynamically associ-
ates the first virtual space with the second virtual space to
create a redundant code from data in a plurality of nodes.

In this case, the system shares information such as a write
location pointer among the plurality of nodes forming a
stripe type. The write location pointer is a pointer to indicate
the current location of write, assuming a plurality of nodes
incrementally adds write data to the second virtual space in
a log style.

The system further controls the associations of the first
virtual space with the second virtual space so that the write
location pointer is consistent, which is to say, that data
received from a plurality of nodes and redundant codes of
the data will be written to be associated with a specific area
in the second virtual space.

The data protection technique and the data allocation
technique of this disclosure dynamically create redundant
codes from a set of data units (data blocks) in the cache that
have been transferred from a plurality of different nodes.
That is to say, as a result of random selection of the same
stripe type of data from the data managed in the code dirty
queue 901 (58802 in FIG. 18), the logical addresses of the
source data blocks for one node to create an inter-node
redundant code are not fixed to a single combination, but
allow two or more combinations.

Meanwhile, in this disclosure, data blocks are managed
together with transfer source addresses as illustrated in FIG.
8, which allows a redundant code to be created in a dynamic
combination of logical addresses. Furthermore, the number
of data blocks to be used to create a redundant code is not
limited to a specific value but can be changed dynamically.
The above-described configuration achieves data protection
with small overhead, eliminates network bottleneck, and
attains data allocation for providing speedy local accesses.
Furthermore, if the drives are SSDs, less frequent write
operations can be achieved to save the lives of the SSDs.

The data protection technique and the data allocation
technique of this disclosure achieve data allocation suitable
for local read and data protection together and also eliminate
network bottleneck. Furthermore, since the management
information on the data stored in the local storage device can
be held in the local node, the information on virtual volumes
and pool volumes can be closed within the share among a
small number of nodes, achieving less information to be
shared. As a result, high scalability is attained independent
from the number of nodes. In addition, the high scalability
can lower the network cost in constructing the system.

The above-described plurality of functions in the distrib-
uted storage system can be independently implemented. For
example, the system may implement only one of the func-
tions of creating a redundant code, the function of reallo-
cation, and the function of receiving designation of node to
allocate a page. The configuration of a node is not limited to
the above-described computer configuration. The node pro-
tection layer may be omitted. Further, only either one of the
site protection layer and the site protection layer may be
implemented.

It should be noted that this invention is not limited to the
above-described embodiments but include various modifi-
cations. For example, the drives 113 shown in FIG. 3 do not
need to be in the package of a computer node 101, as far as
the processor recognizes that the drives 113 are the local
storage devices to be managed by the processor. The above-

US 10,496,479 B2

55

described embodiments have described details in order to
describe this invention for better understanding; they are not
limited to those including all the configurations that have
been described. A part of the configuration of each embodi-
ment may be replaced with a configuration of another
embodiment or a configuration of an embodiment may be
incorporated to a configuration of another embodiment. A
part of the configuration of each embodiment may be added,
deleted, or replaced by that of a different configuration.

The above-described configurations, functions, and pro-
cessing units, for all or a part of them, may be implemented
by hardware: for example, by designing an integrated cir-
cuit. The above-described configurations and functions may
be implemented by software, which means that a processor
interprets and executes programs providing the functions.
The information of programs, tables, and files to implement
the functions may be stored in a storage device such as a
memory, a hard disk drive, or an SSD (Solid State Drive), or
a storage medium such as an IC card, or an SD card.

The drawings shows control lines and information lines as
considered necessary for explanations but do not show all
control lines or information lines in the products. It can be
considered that most of all components are actually inter-
connected.

In addition to the configurations recited in the claims,
features of this disclosure are summarized as follows.
ey

The storage system includes at least one computer and a
plurality of storage drives;

the at least one computer is configured to determine a data
drive to store a write data block and a first redundant code
drive to store a redundant code of the write data block;

the at least one computer is configured to send the write
data block to the data drive and the first redundant code
drive;

the data drive is configured to store the write data block
10 a storage medium; and

the first redundant code drive is configured to create a
redundant code using a plurality of write data blocks
received from the at least one computer and store the
redundant code to a storage medium.

@

The first redundant code drive is configured to:

determine a stripe type for each of the received write data
blocks based on a write location of the write data block, and

create a redundant code from a plurality of write data
blocks included in the same stripe type.
3)

The first redundant code drive is configured to:

further receive information on storage locations of the
write data blocks from the at least one computer, and

manage a relation between a storage location of the

redundant code and storage locations of the plurality of write
data blocks.
Q)

The at least one computer is further configured to send the
plurality of write data blocks to a second redundant code
drive together with the information on storage locations of
the plurality of write data blocks; and

the second redundant code drive is configured to acquire
configuration information including information on a plu-
rality of write data blocks used to create the redundant code
in the first redundant code drive and create a redundant code
using the plurality of write data blocks selected in accor-
dance with the configuration information.

10

15

20

25

30

35

40

45

50

55

65

56
®)

The storage system includes a computer and a plurality of
storage drives;

the computer is configured to determine a data drive to
store a write data block and a redundant code drive to store
a redundant code of the write data block;

the computer is configured to send the write data block to
the data drive;

the data drive is configured to store the write data block
to a storage medium;

the computer is configured to create a redundant code
using the write data block;

the computer is configured to send the redundant code and
configuration information on a plurality of write data blocks
used to create the redundant code to the redundant code
drive;

the redundant code drive is configured to store the redun-
dant code to a storage medium; and

the redundant code drive is configured to manage a
relation between a storage location of the redundant code
and storage locations of the plurality of write data blocks.

What is claimed is:

1. A distributed storage system comprising:

a plurality of nodes configured to communicate with one

another via a network, each one of the nodes comprises
a respective volume and is configured to manage its
respective volume,

wherein each of the plurality of nodes is further config-

ured to:

store user data and secondary redundant data in the

respective volume thereof, and

create the secondary redundant data stored in the respec-

tive volume thereof based on blocks of data of other
nodes different from one another, the blocks of data
being user data stored in the other nodes and primary
redundant data created from the user data stored in the
other nodes,

wherein when restoring the user data, each of the plurality

of nodes is configured to:

restore a first primary redundant data based on a first user

data stored in one of the nodes;
restore a plurality of second primary redundant data based
on the restored first primary redundant data and sec-
ondary redundant data stored in one of the nodes; and

restore a second user data based on the plurality of second
primary redundant data.

2. The distributed storage system according to claim 1,
wherein each of the plurality of nodes is further configured
to create the secondary redundant data based on blocks of
the user data and create the secondary redundant data based
on blocks of the primary redundant data.

3. The distributed storage system according to claim 1,
wherein, in each of the plurality of nodes, the secondary
redundant data stored in the respective volume thereof is
independent of the user data stored in the respective volume
thereof.

4. The distributed storage system according to claim 1,
wherein the plurality of nodes include a first node, a second
node and a third node, and

wherein the first user data is stored in the first node, the

first secondary redundant data is stored in the second
node different from the first node, and the second data
is the primary redundant data created based on the user
data stored in the third node different from the first node
and the second node.

5. The distributed storage system according to claim 1,
wherein the plurality of nodes include a first node, a second
node, a third node and a fourth node,

US 10,496,479 B2

57

wherein the first node stores received first user data in the
respective volume thereof and stores the secondary
redundant data created from blocks of the user data
stored in the second node, the third node and the fourth
node,

wherein the second node stores received second user data

in the respective volume thereof and stores the second-
ary redundant data created from one of the blocks of the
user data stored in the first node and the blocks of the
primary redundant data created from the user data of
the third node and the fourth node,

wherein the third node stores received third user data in

the respective volume thereof and stores the secondary
redundant data created from the blocks of the primary
redundant data created from the user data of the first
node, the second node and the fourth node,

wherein the fourth node stores received fourth user data in

the respective volume thereof and stores the secondary
redundant data created from the blocks of the primary
redundant data created from the user data of the first
node, the second node and the third node.

6. The distributed storage system according to claim 5,
wherein the secondary redundant data stored by the third
node and the secondary redundant data stored by the fourth
node are created from different blocks of the primary redun-
dant data.

7. The distributed storage system according to claim 1,
wherein the primary redundant data is not stored in the node
and each of the plurality of nodes is configured to generate
the primary redundant data when storing the user data and
restoring the user data.

8. A method of storing and restoring data in a distributed
storage system which includes a plurality of nodes config-
ured to communicate with one another via a network, each
of the plurality of nodes comprises a respective volume and
is configured to manage its respective volume, the method
comprising:

storing, by each one of the nodes, user data in the

respective volume thereof;
creating, by each one of the nodes, secondary redundant
data based on blocks of data of other nodes different
from one another, the blocks of data being user data
stored in the other nodes and primary redundant data
created from the user data stored in the other nodes; and

storing, by each one of the nodes, the respectively created
secondary redundant data in the respective volume
thereof;

wherein when restoring the user data, the method com-

prising:

restoring a first primary redundant data based on a first

user data stored in one of the nodes;

restoring a plurality of second primary redundant data

based on the restored first primary redundant data and
secondary redundant data stored in one of the
nodes; and

20

25

30

40

45

58

restoring a second user data based on the plurality of

second primary redundant data.
9. The method according to claim 8, wherein each of the
plurality of nodes is further configured to create the second-
ary redundant data based on blocks of the user data and
create the secondary redundant data based on blocks of the
primary redundant data.
10. The method according to claim 8, wherein, in each of
the plurality of nodes, the secondary redundant data stored
in the respective volume thereof is independent of the user
data stored in the respective volume thereof.
11. The method according to claim 8, wherein the plural-
ity of nodes include a first node, a second node and a third
node, and
wherein the first user data is stored in the first node, the
first secondary redundant data is stored in the second
node different from the first node, and the second data
is the primary redundant data created based on the user
data stored in the third node different from the first node
and the second node.
12. The method according to claim 8, wherein the plu-
rality of nodes include a first node, a second node, a third
node and a fourth node,
wherein the first node stores received first user data in the
respective volume thereof and stores the secondary
redundant data created from blocks of the user data
stored in the second node, the third node and the fourth
node,
wherein the second node stores received second user data
in the respective volume thereof and stores the second-
ary redundant data created from one of the blocks of the
user data stored in the first node and the blocks of the
primary redundant data created from the user data of
the third node and the fourth node,
wherein the third node stores received third user data in
the respective volume thereof and stores the secondary
redundant data created from the blocks of the primary
redundant data created from the user data of the first
node, the second node and the fourth node, and

wherein the fourth node stores received fourth user data in
the respective volume thereof and stores the secondary
redundant data created from the blocks of the primary
redundant data created from the user data of the first
node, the second node and the third node.

13. The method according to claim 12, wherein the
secondary redundant data stored by the third node and the
secondary redundant data stored by the fourth node are
created from different blocks of the primary redundant data.

14. The method according to claim 8, wherein the primary
redundant data is not stored in the node and each of the
plurality of nodes is configured to generate the primary
redundant data when storing the user data and restoring the
user data.

	Info
	Abstract
	Drawing
	Description

