
Hitachi Industrial Edge Computer

CE50-10A User's Guide

CC-65-0179

■ Product covered by this manual

CE50-10A (Operating system: Ubuntu 18.04 LTS (Linux kernel 4.15))

■ Export restrictions
If you export this product, please check all restrictions (for example, Japan's Foreign Exchange and Foreign Trade Law, and USA export
control laws and regulations), and carry out all required procedures.

If you require more information or clarification, please contact your Hitachi sales representative.

■ Trademarks
HITACHI is a registered trademark of Hitachi, Ltd.

Google Chrome is a trademark of Google LLC.

Intel and OpenVINO are trademarks of Intel Corporation in the U.S. and/or other countries.

Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PostgreSQL is a registered trademark or trademark of the PostgreSQL Community Association of Canada in Canada and/or other countries.

Ubuntu is a registered trademark or trademark of Canonical Ltd.

Other company and product names mentioned in this document may be the trademarks of their respective owners.

■ Software
This product contains some open source software to perform its functions. The property rights, copyrights, and other intellectual property
rights of the open source software belong to the author, and can be used under the conditions stated in the bundled license. For details, see the
following file in this product:

/hitachi/licenses/copyright.txt

For open source software whose license specifies that the source code is to be provided, Hitachi will provide the source code of the open
source software. Contact your Hitachi sales representative or distributor if you require such source code. Hitachi assumes no liability,
including liability for damages, for open source software and its use.

This does not mean that Hitachi disclaims product liability for this unit.

■ Precautions
All contents of this manual are protected by copyright. No part of this manual may be reproduced in any form or by any means without
permission in writing from the publisher. Information in this manual is subject to change without notice.

Read this manual carefully and keep it. Before using the unit, make sure that you thoroughly read and understand all the safety instructions.

Keep this manual in a place where it can be readily accessed as necessary.

■ Issued
June 2021: CC-65-0179

■ Copyright
All Rights Reserved. Copyright (C) 2021, Hitachi, Ltd.

Preface
This manual provides an overview, operation procedures, and other information about the AI image application development
and execution functionality (abbreviated hereinafter to AI image application functionality) provided by the Hitachi Industrial
Edge Computer CE50-10A (abbreviated hereinafter to CE50-10A).

■ Intended readers
This manual is intended for those who use the CE50-10A (operators, system engineers, and maintenance personnel).

■ Organization of this manual
This manual is organized into the following chapters and an appendix:

PART 1: Description

1. Functional overview
This chapter provides an overview of the functions that are provided by the CE50-10A.

PART 2: Experience

2. Quick guide for using AI image application functionality
This chapter provides a quick guide for setting up AI image application functionality and running sample programs for users who
have not yet experienced the AI image application functionality.

PART 3: Setup

3. Setting up the AI image application functionality
This chapter describes the procedure for setting up the AI image application functionality.

PART 4: Design and Functionality

4. Design of the AI image application functionality
This chapter describes how to customize the AI image application functionality and how to start and stop the functionality.

5. Data input function
This chapter provides an overview of the data input function. This chapter also describes how to connect a camera to the function
and how to set up the function.

6. Data management function
This chapter provides an overview of the data management function. This chapter also describes the API and library specifications,
and how to set up the function.

7. Inference execution function
This chapter provides an overview of the inference execution function, shows the general procedure for implementing inference
processing, and describes sample programs.

8. Inference development function
This chapter provides an overview of the inference development function. This chapter also describes how to start the function and
how to use Jupyter Notebook.

PART 5: Operation

9. RAS techniques for the AI image application functionality
This chapter describes how to specify the settings for error detection, container restart, and collection of operating information.

10. Updater
This chapter provides an overview of the updater and describes the update procedure.

I

11. Troubleshooting
This chapter describes the error messages that are displayed by the AI image application functionality and the actions to be taken
when the error messages are displayed.

Appendix

A. Interfaces of the CE50-10A
This appendix describes the interfaces that are supported by the CE50-10A.

■ Related publications
A manual related to this manual is as follows. Refer to this manual when necessary.

• Hitachi Industrial Edge Computer CE50-10 Instruction Manual (CC-65-0171)

■ Conventions: Abbreviations for product names
This manual uses the following abbreviations for product names:

Full name Abbreviation Meaning

Hitachi Industrial Edge Computer CE50-10 CE50-10 A generic name for the CE50-10 series models

Hitachi Industrial Edge Computer CE50-10A CE50-10A A CE50-10 series model that has the AI image application
functionality

■ Conventions: Fonts and symbols
The following table explains the text formatting conventions used in this manual:

Text formatting Convention

Bold Bold characters indicate text in a window, other than the window title. Such text includes menus, menu
options, buttons, radio box options, or explanatory labels. For example:

• From the File menu, choose Open.

• Click the Cancel button.

• In the Enter name entry box, type your name.

Italic Italic characters indicate a placeholder for some actual text to be provided by the user or system. For
example:

• Write the command as follows:
copy source-file target-file

• The following message appears:
A file was not found. (file = file-name)

Italic characters are also used for emphasis. For example:

• Do not delete the configuration file.

Monospace Monospace characters indicate text that the user enters without change, or text (such as messages) output
by the system. For example:

• At the prompt, enter dir.

• Use the send command to send mail.

• The following message is displayed:
The password is incorrect.

Preface

II

■ Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

Preface

III

Contents

Part 1: Description

1 Functional overview 1

1.1 What can be done with CE50-10A 2

1.2 AI image application functionality 4

1.2.1 OpenVINO 4

Part 2: Experience

2 Quick guide for using the AI image application functionality 7

2.1 Overview of experiencing the AI image application functionality 8

2.1.1 Creating a Docker-only partition 9

2.1.2 Confirming the Docker-only partition 9

2.1.3 Creating a file system in the Docker-only partition 10

2.1.4 Mounting the Docker-only partition 10

2.1.5 Starting the Docker service 10

2.1.6 Installing a Docker image 10

2.2 Description of sample programs 12

2.2.1 Running the sample program that imports a sample video 12

2.2.2 Running the sample program that imports a live video from a USB camera 13

Part 3: Setup

3 Setting up the AI image application functionality 17

3.1 Procedure for setting up the AI image application functionality 18

3.1.1 Creating and mounting a Docker-only partition 18

3.1.2 Starting the Docker service 18

3.1.3 Installing the Docker image 18

3.2 Displaying the partition information 19

i

Part 4: Design and Functionality

4 Design of the AI image application functionality 21

4.1 Using the Compose file to customize the functionality 22

4.2 Procedure for setting up the automatic startup of Docker containers during OS startup 25

4.2.1 Procedure for setting up the automatic startup of the Docker service 25

4.2.2 Procedure for enabling the automatic startup of Docker containers 25

4.3 How to start and stop the AI image application functionality 26

4.3.1 How to start Docker containers 26

4.3.2 How to stop Docker containers 26

4.3.3 How to check the status of the Docker containers 27

4.4 Notes on designing a system 28

4.4.1 Provided container images 28

4.4.2 Automatic restart of Docker containers 28

4.4.3 Tuning the number of obtained frames 29

4.4.4 Firewall settings 29

4.4.5 Security risks and countermeasures 31

5 Data input function 33

5.1 Overview of the data input function 34

5.2 How to connect a camera 35

5.2.1 Connecting a USB camera 35

5.2.2 Connecting an IP camera 35

5.3 How to specify the settings of the data input function 36

5.3.1 Settings of the data input function 36

5.3.2 Container settings 39

5.4 Procedure for verifying operation 41

6 Data management function 43

6.1 Overview of the data management function 44

6.2 API specifications of the data management function 46

6.2.1 Registering a file in the data management function (v1FilesPost) 46

6.2.2 Updating file status (v1FilesFileIdPut) 47

6.2.3 Receiving files (v1FilesGet) 47

6.3 Specifications of the library available for the data management function 49

6.3.1 Library usage 49

6.3.2 Settings for using the library 49

6.3.3 How to import the library 50

6.3.4 Dataman class methods 50

6.3.5 Constants for file statuses 51

Contents

ii

6.4 How to specify the settings of the data management function 52

6.4.1 Settings file for the data management function 52

6.4.2 Compose file settings 52

7 Inference execution function 55

7.1 Overview of the inference execution function 56

7.1.1 How to obtain the pre-trained models provided for use with OpenVINO 56

7.1.2 Converting a pre-trained model into an intermediate representation 56

7.2 Overview of implementing inference processing 58

7.2.1 How to implement inference processing 58

7.3 Description of the sample program 62

7.3.1 Processing performed by the sample program 62

8 Inference development function 67

8.1 Overview of the inference development function 68

8.2 How to start the inference development function 69

8.3 How to use Jupyter Notebook 70

8.3.1 Basic operations in Jupyter Notebook 70

8.3.2 Procedure for using OpenVINO on Jupyter Notebook 72

9 RAS techniques for the AI image application functionality 75

9.1 Overview of the RAS techniques for the AI image application functionality 76

9.2 Error detection 77

9.2.1 Settings in the Compose file 77

9.2.2 Log format 77

9.2.3 Maximum size and generation management of the log file 77

9.3 Container restart 79

9.4 Collection of operating information 80

Part 5: Operation

10 Updater 81

10.1 Overview of the updater 82

10.2 Overview of the update procedure 83

10.2.1 Update procedure 83

11 Troubleshooting 87

11.1 Error messages that might be displayed when the docker-compose command is run 88

Contents

iii

11.2 Error messages of the data input function 89

11.3 Error messages of the data management function 90

11.4 Error messages of the inference execution function 91

11.5 Error messages of the inference development function 92

Appendix 93

A. Interfaces of CE50-10A 94

A.1 Supported specifications 94

Contents

iv

Part 1: Description

1 Functional overview
This chapter provides an overview of the functions that are provided by CE50-10A.

1

1.1 What can be done with CE50-10A
CE50-10A performs AI inference processing (abbreviated hereinafter to inference processing) by using image data
obtained from USB cameras, IP cameras, image inspection devices, and other devices. CE50-10A can automatically
display the results of inference processing and the user can make an appropriate decision from the displayed results.
CE50-10A also provides an environment in which the user can freely develop inference processing or implement user
processing that uses inference results.

The user can build a variety of solutions in a short period of time by using inference processing with pre-trained
models.

The following figure provides an overview of the functions provided by CE50-10A and the flow of image data.

Figure 1‒1: Functions provided by CE50-10A and the flow of image data

For details about Docker, see Container function (Docker) in the CE50-10 Instruction Manual.

1. Functional overview

2

The AI image application functionality consists of the following functions:

• Data input function

• Data management function

• Inference execution function

• Inference development function

• RAS techniques for the AI image application functionality

• Updater

For an overview of each function, see 1.2 AI image application functionality.

1. Functional overview

3

1.2 AI image application functionality
The following table describes the functions of the AI image application functionality.

Table 1‒1: AI image application functionality

No. Function Description Reference

1 Data input function This function receives image data from a USB camera or
IP camera and generates video (moving image) files and
picture (still image) files from the data (hereinafter, video
files and picture files are collectively referred to as visual
files). The visual files are generated based on the camera
connection information in the settings file. This function
then passes the visual files to the data management
function.

5. Data input function

2 Data management
function

This function manages the visual files passed from the data
input function and the visual files forwarded by devices
such as the image inspection device.

This function then passes the managed visual files to the
inference execution function in response to inference
processing requests.

6. Data management
function

3 Inference execution
function

This function performs inference processing by using a
user-created pre-trained model or a pre-trained model
provided for OpenVINO.

• 1.2.1 OpenVINO

• 7. Inference execution
function

4 Inference development
function

Users can use Jupyter Notebook, which is a standard tool
used for data analysis and AI development, to develop their
own inference processing methods.

8. Inference development
function

5 RAS techniques for the
AI image application
functionality

The following RAS techniques are available for the AI
image application functionality:

• Detecting errors

• Restarting containers

• Configuring the collection of operating information

9. RAS techniques for the
AI image application
functionality

6 Updater The updater can update user-developed inference
processing programs and software on a container basis.

10. Updater

1.2.1 OpenVINO
OpenVINO is bundled with CE50-10A. OpenVINO is software that allows inference processing to run on the Intel
architecture. OpenVINO consists of two components: Model Optimizer and Inference Engine. The roles of these
components are as follows:

• Model Optimizer
This component optimally converts a pre-trained model (built by using TensorFlow, Caffe, mxnet, or some other
framework) to an OpenVINO-compatible format for use during inference processing.
Pre-trained models that were built by using multiple frameworks can be made usable in OpenVINO by using
Model Optimizer.

• Inference Engine
This component runs inference processing on the Intel architecture at high speed by using a pre-trained neural
network model. OpenVINO is provided together with the Inference Engine software, which runs inference
processing, and a library that calls the Inference Engine software. Users can call inference processing functions by
using Python or C++.

The following figure shows how the two components work in OpenVINO.

1. Functional overview

4

Figure 1‒2: How the two components work in OpenVINO

OpenVINO provides pre-trained models that were created by Intel. The following table shows some of the pre-trained
models.

Table 1‒2: Some of the pre-trained models provided by OpenVINO

No. Model Description

1 Object Detection This model detects objects. For example, faces, people, pedestrians, and vehicles can
be detected.

2 Object Recognition This model recognizes objects. For example, the age and gender of a person, the
direction of a face, the number on the registration plate of a vehicle, and the emotion of
a person can be recognized.

3 Semantic Segmentation This model associates a label or category with all of the pixels in an image.

4 Human Pose Estimation This model detects the skeleton.

5 Image Processing This model performs inference processing for an image. For example, the resolution of
images can be enhanced by using this model.

6 Text Detection This model detects text.

7 Text Recognition This model recognizes text. For example, numbers, alphabetic characters, and Japanese
characters can be recognized.

8 Action Recognition This model recognizes actions. For example, the actions of a driver and sign language
can be recognized.

9 Image Retrieval This model completes an image.

1. Functional overview

5

Part 2: Experience

2 Quick guide for using the AI image
application functionality
This chapter provides a quick guide for setting up the AI image application
functionality and running sample programs for users who do not have experience in
using the AI image application functionality.

7

2.1 Overview of experiencing the AI image application
functionality

This section provides an overview of experiencing the AI image application functionality.

Figure 2‒1: Overview of experiencing the AI image application functionality

Legend:
(...): Details are provided in the section enclosed in parentheses.

2. Quick guide for using the AI image application functionality

8

2.1.1 Creating a Docker-only partition
Perform the following procedure to create a 15-GB partition that will be used by Docker only. This partition is
required to run sample programs.

1. Run the gdisk command with /dev/sda specified as an argument.

$ sudo gdisk /dev/sda
GPT fdisk (gdisk) version 1.0.3

Partition table scan:
 MBR: protective
 BSD: not present
 APM: not present
 GPT: present

Found valid GPT with protective MBR; using GPT.

Command (? for help):

2. Enter the n command, which creates a new partition.

Command (? for help):n

3. When the following appears, press the Enter key without entering anything:

Partition number (1-128, default 9):

4. When the following appears, press the Enter key without entering anything:

First sector (34-2047, default = 34) or {+-}size{KMGTP}:

5. Enter +15G, which specifies that a 15-GB partition will be created, and then press the Enter key.

Last sector (34-2047, default = 2047) or {+-}size{KMGTP}:+15G

6. When the following appears, press the Enter key without entering anything:

Current type is 'Linux filesystem'
Hex code or GUID (L to show codes, Enter = 8300):

7. Enter the w command, which starts a data write to the disk.

Command (? for help):w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING
PARTITIONS!!

8. When the following confirmation message appears, enter Y:

Do you want to proceed? (Y/N):Y

9. When the disk write is completed, the command displays the following message and then ends:

OK; writing new GUID partition table (GPT) to /dev/sda.
Warning: The kernel is still using the old partition table.
The new table will be used at the next reboot or after you
run partprobe(8) or kpartx(8)
The operation has completed successfully.

A Docker-only partition has been created.

2.1.2 Confirming the Docker-only partition
In 2.1.1 Creating a Docker-only partition, you created a Docker-only partition. Perform the following procedure to
confirm that the created partition exists:

1. Run the following command to display a list of partitions as follows:

2. Quick guide for using the AI image application functionality

9

$ ls /dev/sda*
/dev/sda /dev/sda1 /dev/sda2 /dev/sda3 /dev/sda4 /dev/sda5 /dev/sda6 /dev/sda
7 /dev/sda8

2. Run the following command to notify the OS of the current partition configuration:

$ sudo partprobe

The OS recognizes the current partition configuration when the preceding command is run. You do not need to
restart the OS.

3. Run the following command to display a list of partitions as follows:

$ ls /dev/sda*
/dev/sda /dev/sda1 /dev/sda2 /dev/sda3 /dev/sda4 /dev/sda5 /dev/sda6 /dev/sd
a7 /dev/sda8 /dev/sda9

If the partition that you created in 2.1.1 Creating a Docker-only partition is recognized by the OS as the Docker-
only partition, /dev/sda9 is included in the list of partitions.

2.1.3 Creating a file system in the Docker-only partition
Now you need to create a file system in the partition that you created in 2.1.1 Creating a Docker-only partition.

1. Run the following command to create an EXT4 file system as follows:

$ sudo mkfs -t ext4 /dev/sda9
mke2fs 1.44.1 (24-Mar-2018)
Discarding device blocks: done
Creating filesystem with 4096 1k blocks and 1024 inodes

Allocating group tables: done
Writing inode tables: done
Creating journal (1024 blocks): done
Writing superblocks and filesystem accounting information: done

2.1.4 Mounting the Docker-only partition
Perform the following procedure to mount the Docker-only partition that you created in 2.1.1 Creating a Docker-only
partition:

1. Stop Docker.
If Docker is already stopped, go to step 2.

$ sudo systemctl stop docker

2. Mount the Docker-only partition that you created to /var/lib/docker.

$ sudo mount /dev/sda9 /var/lib/docker

2.1.5 Starting the Docker service
Perform the following procedure to start the Docker service:

1. Run the following command to start Docker:

$ sudo systemctl start docker

2.1.6 Installing a Docker image
Perform the following procedure to install a Docker image:

1. Run the following command to install a Docker image:

2. Quick guide for using the AI image application functionality

10

$ sudo /hitachi/ctrl_edge_ai/bin/install_edge_ai.sh

2. Quick guide for using the AI image application functionality

11

2.2 Description of sample programs
The procedures for using the AI image application functionality are described later. In these procedures, you will use
sample programs and sample Compose files.

CE50-10A comes with sample programs that perform the following processes:

• Import a sample video, display the number of people who appear in the video, and control the indication state of
the AP indicator according to the number of people detected. (For details about the AP indicator, see RAS
indicator (AP, E3, E2, E1) in the CE50-10 Instruction Manual.)

• Import a live video from a USB camera, display the number of people who appear in the video and control the
indication state of the AP indicator according to the number of people detected.

The sample video and the live video from the USB camera can be viewed on a display.

The sample programs control the AP indicator, so confirm that no other process is controlling the AP indicator.

Note that the AP indicator stays in the state set by a sample program after the program ends. Therefore, if necessary,
run the following command to turn off the AP indicator:

$ sudo rasledctl -off

See the next sections, which describe the procedures for running the sample programs.

2.2.1 Running the sample program that imports a sample video
1. Run the following command to start the desktop:

$ sudo systemctl start gdm3

2. In the login window that appears, log in as the user edgeadm.

3. Perform the following procedure to open Terminal:

1. Click at the bottom left.

2. Click All.
3. Click Terminal.

Terminal opens.

2. Quick guide for using the AI image application functionality

12

4. Run the following command to permit the programs on Docker to connect to the X server:

$ xhost local:

5. Download a sample video file by referring to 7.2.1 How to implement inference processing, rename the
downloaded file to sample_video.mp4, and then save the file in the following location:

/hitachi/ctrl_edge_ai/sample/people_count/people_count_sample_via_video/component/s
ample_video.mp4

6. Run the following command to start the AP indicator operation process:

$ sudo /hitachi/ctrl_edge_ai/sample/people_count/start_AP

7. Run the following commands to start the container for the sample program:

$ cd /hitachi/ctrl_edge_ai/sample/people_count/people_count_sample_via_video
$ sudo docker-compose up -d

8. Check the execution results.

Figure 2‒2: Examples of cases where the sample program is run (by using a sample video)

9. To stop the sample program, run the following commands:

$ sudo docker-compose down
$ sudo killall AP

2.2.2 Running the sample program that imports a live video from a USB
camera

1. Connect the cable of the USB camera to a USB port of CE50-10A.

2. Run the following command to start the desktop:

2. Quick guide for using the AI image application functionality

13

$ sudo systemctl start gdm3

3. In the login window that appears, log in as user edgeadm.

4. Perform the following procedure to open Terminal:

1. Click at the bottom left.

2. Click All.
3. Click Terminal.

Terminal opens.

5. Run the following command to permit the programs on Docker to connect to the X server:

$ xhost local:

6. Run the following command to start the AP indicator operation process:

$ sudo /hitachi/ctrl_edge_ai/sample/people_count/start_AP

7. Run the following commands to start the sample program:

$ cd /hitachi/ctrl_edge_ai/sample/people_count/people_count_sample_via_usbcam
$ sudo docker-compose up -d

8. Check the execution results.

2. Quick guide for using the AI image application functionality

14

Figure 2‒3: Examples of cases where the sample program is run (by using a USB camera)

9. To stop the sample program, run the following commands:

$ sudo docker-compose down
$ sudo killall AP

2. Quick guide for using the AI image application functionality

15

Part 3: Setup

3 Setting up the AI image application
functionality
This chapter describes how to set up the AI image application functionality.

17

3.1 Procedure for setting up the AI image application
functionality

This section describes the how to perform the tasks that are required to use the AI image application functionality.

3.1.1 Creating and mounting a Docker-only partition
Before you can use Docker, you must create a Docker-only partition and then mount it on CE50-10A.

(1) Creating a Docker-only partition
Create a Docker-only partition whose size is 15 GB or more.

For details about how to create a Docker-only partition, see Creating partitions in the CE50-10 Instruction Manual.

(2) Setting up automatic mounting
The Docker-only partition can be automatically mounted when CE50-10A starts. To set up automatic mounting, you
must specify the definition in the mount definition file (/hitachi/etc/fsconf).

For details about how to specify the definition, see Specifying the definition to automatically mount the application
area in the CE50-10 Instruction Manual.

3.1.2 Starting the Docker service
By default, the Docker service does not automatically start when the OS starts. To temporarily start the Docker
service, run the following command:

$ sudo systemctl start docker

After you run this command, the Docker service will not start when the OS restarts. To start the Docker service again,
run the preceding command again.

If you want the Docker service to start automatically when the OS starts, run the following command:

$ sudo systemctl enable docker

After you run this command, the Docker service will automatically start each time the OS restarts.

3.1.3 Installing the Docker image
Run the following command to install a Docker image that provides the AI image application functionality. When you
run the command, make sure that the OS operation mode is set to normal mode.

$ sudo /hitachi/ctrl_edge_ai/bin/install_edge_ai.sh

After the Docker image is installed in the Docker-only partition, you can delete the Docker image. Note that you
might need to use the Docker image again if an error (such as corruption) occurs on the partition. Therefore, we
recommend that, before deleting the Docker image, you back it up to a USB memory drive or other external storage
media.

3. Setting up the AI image application functionality

18

3.2 Displaying the partition information
Display the partition information to confirm that the partition you created in (1) Creating a Docker-only partition
exists. You can perform either of the following two procedures.

Procedure 1:

1. Run the gdisk command with /dev/sda specified as an argument.

$ sudo gdisk /dev/sda
GPT fdisk (gdisk) version 1.0.3

Partition table scan:
 MBR: protective
 BSD: not present
 APM: not present
 GPT: present

Found valid GPT with protective MBR; using GPT.
Command (? for help):

2. Enter the p command, which displays the partition information.

Command (? for help):p
Disk /dev/sda: 15728640 sectors, 7.5 GiB
Logical sector size: 512 bytes
Disk identifier (GUID): 6A423A3C-EFD1-448C-AA4F-70DB2D2D757B
Partition table holds up to 128 entries
First usable sector is 34, last usable sector is 15728606
Partitions will be aligned on 2048-sector boundaries
Total free space is 2014 sectors (1007.0 KiB)
Number Start (sector) End (sector) Size Code Name
 1 2048 15728606 7.5 GiB 8300 Linux filesystem

Note
The underlined portion is the partition information.

3. Enter q to quit the processing.

Command (? for help):q

Procedure 2:

1. Run the gdisk command with /dev/sda specified as an argument and with the -l option specified.
The gdisk command displays the partition information and ends immediately without displaying a prompt.

$ sudo gdisk /dev/sda -l
Disk /dev/sda: 15728640 sectors, 7.5 GiB
Logical sector size: 512 bytes
Disk identifier (GUID): 6A423A3C-EFD1-448C-AA4F-70DB2D2D757B
Partition table holds up to 128 entries
First usable sector is 34, last usable sector is 15728606
Partitions will be aligned on 2048-sector boundaries
Total free space is 2014 sectors (1007.0 KiB)

Number Start (sector) End (sector) Size Code Name
 1 2048 15728606 7.5 GiB 8300 Linux filesystem

Note
The underlined portion is the partition information.

3. Setting up the AI image application functionality

19

Part 4: Design and Functionality

4 Design of the AI image application
functionality
This chapter describes how to customize the AI image application functionality and
how to start and stop the functionality.

21

4.1 Using the Compose file to customize the functionality
You can customize the settings in the Compose file so that the AI image application functionality can be used in
different cases. The Compose file is in YAML format. In YAML format, indentation is used to express the hierarchical
data structure.

Example of the Compose file
In the following example, the numbers #n along the right side correspond to the item numbers in Table 4‒1: Setting
items in the Compose file.

version: '3' #1
services: #2
 data_input: #3
 ipc: host #4
 image: ctrl_edge_ai/data_input:1.0 #5
 network_mode: host #6
 restart: on-failure:5 #7
 environment: #8
 DISPLAY: $DISPLAY
 volumes: #9
 - /tmp/.X11-unix:/tmp/.X11-unix
 - input_volume:/input
 - /home/edgeadm/share:/share
 - /home/edgeadm/data_input.json:/config/data_input.json
 depends_on: #10
 - openvino_prod
 logging: #11
 driver: syslog
 options:
 syslog-facility: daemon
 tag: docker-compose/{{.Name}}/{{.ID}}
 devices: #12
 - "/dev/dri:/dev/dri"
 - "/dev/video0:/dev/video0"
 data_manager:
 image: ctrl_edge_ai/data_manager:1.0
 network_mode: host
 restart: on-failure:5
 volumes:
 - input_volume:/input
 - storage_volume:/storage
 - /home/edgeadm/share:/share
 logging:
 driver: syslog
 options:
 syslog-facility: daemon
 tag: docker-compose/{{.Name}}/{{.ID}}
 openvino_prod:
 ipc: host
 image: ctrl_edge_ai/openvino_prod:1.0
 network_mode: host
 restart: on-failure:5
 environment:
 DISPLAY: $DISPLAY
 volumes:
 - /tmp/.X11-unix:/tmp/.X11-unix
 - storage_volume:/storage
 - /home/edgeadm/share:/share
 depends_on:
 - data_manager
 logging:
 driver: syslog
 options:
 syslog-facility: daemon
 tag: docker-compose/{{.Name}}/{{.ID}}
 devices:
 - "/dev/dri:/dev/dri"
volumes: #13
 input_volume: #14
 driver: local #15
 driver_opts: #16
 type: tmpfs
 device: tmpfs
 o: "size=512m"
 storage_volume:
 driver: local

4. Design of the AI image application functionality

22

The following table describes the items set in the Compose file.

Table 4‒1: Setting items in the Compose file

No. Setting item Description

1 version: Specifies the Compose file version used by the docker-compose
command.

The docker-compose command provided by this product is
compatible with version 3.

2 services: Indicates that subsequent lines specify service definitions.

3 data_input:
data_manager:
openvino_prod:

Items at this hierarchical level define service names. You can define any
names you like.

In this example, three services are defined:

• Data input function: data_input
• Data management function: data_manager
• Inference execution function: openvino_prod

4 ipc: If shared memory is to be used, this item specifies what the same memory
space is to be shared with. This item is used when X forwarding is to be
performed.

The AI image application functionality supports only the specification of
host (meaning that the memory is shared with the host).

5 image: image-name:tag-name Specifies an image name and tag name.

6 network_mode: host Specifies the virtual network mode.

In this example, data is shared with the host.

7 restart: on-
failure[:max_retries]

Specifies how the functionality behaves when it restarts.

As in this example, if on-failure is specified, the functionality
attempts to restart if the container terminates abnormally (if the end status
is not 0). The maximum number of times the functionality attempts to
restart is specified by max_retries. If max_retries is not specified, the
functionality continues to attempt to restart until it succeeds.

8 environment:# Specifies environment variables.

In the example of the Compose file shown earlier, the host environment
variable DISPLAY is passed to the container so that the content displayed
by the GUI in the container is forwarded (by X forwarding) to the host.

9 volumes:# Defines volumes or specifies the volumes to be mounted.

If the name of a volume is defined in volume-name: format, the defined
volume will be used.

• A definition in host-path:container-path[:access-mode] format
enables file sharing between the host and container.

• A definition in volume-name:container-path[:access-mode] format
enables file sharing between containers via the specified volume.

In the example, the share directory is set to share the X11-unix
directory and files so that X forwarding can be performed.

10 depends_on: Specifies the dependency of the container.

In the example, data_manager, openvino_prod, and
data_input are started in this order.

11 logging: Specifies logging-related settings.

For details, see 9. RAS techniques for the AI image application
functionality.

12 devices: Allocates host devices to a container.

4. Design of the AI image application functionality

23

No. Setting item Description

12 devices: • host-device:container-device

In the example, the data_input container uses a GPU (graphical
processing unit) and USB camera, and the openvino_prod container
uses a GPU.

13 volumes: Indicates that subsequent lines specify volume definitions.

14 input_volume:
storage_volume:

Items at this hierarchical level define volume names.

In the example, the following two volumes are created:

• input_volume: Volumes used by the data input function to
manage data

• storage_volume: Volume used by the data management function
to perform inference

15 driver: Specifies a volume driver.

The AI image application functionality supports only the specification of
local (the local volume).

16 driver_opts: Specifies driver options.

The main memory is set as the data storage destination by additionally
setting the following options:
type: tmpfs
device: tmpfs
o: "size=512m"
The size=512m setting limits data storage to a maximum of 512 MB.

The o: option can be omitted. However, we recommend that you set an
upper limit to prevent data from consuming too much of the main
memory.

#
To forward the content displayed by the GUI in a container to the host so that the content is displayed on the host,
add the following settings to the appropriate container in the Compose file:

 ipc: host
 environment:
 DISPLAY: $DISPLAY
 volumes:
 - /tmp/.X11-unix:/tmp/.X11-unix

4. Design of the AI image application functionality

24

4.2 Procedure for setting up the automatic startup of
Docker containers during OS startup

This section describes how to set up the automatic startup of Docker containers during OS startup.

4.2.1 Procedure for setting up the automatic startup of the Docker
service

To set up the automatic startup of the Docker service, use fsmount to specify the settings to automatically mount the
Docker-only partition. For details, see 3.1.1 Creating and mounting a Docker-only partition.

Then, run the command that enables the automatic startup of the Docker service. For details, see 3.1.2 Starting the
Docker service.

4.2.2 Procedure for enabling the automatic startup of Docker containers
Use the following procedure to set up the automatic startup of Docker containers during OS startup. Note that this
procedure uses systemd.

1. Create a systemd script file.
The following is an example script. For details about the setting items to be specified, see Setting start and stop of
application programs in the CE50-10 Instruction Manual.
When you assign a name to the script file, make sure that the name is related to the functionality of the application
to be run (for example, people_count.service).

[Unit]
Description=Docker container
Requires=docker.service
After=docker.service
[Service]
ExecStart=/usr/local/bin/docker-compose -f /home/edgeadm/work/docker-compose.yaml u
p
Type=simple
[Install]
WantedBy=edge-normal.target

For the -f option of the docker-compose command, specify the absolute path of the Compose file. (In the
preceding example, the absolute path of the Compose file is /home/edgeadm/work/docker-
compose.yaml.)

2. Enable automatic startup.
After you have created the systemd script file, store it in /lib/systemd/system, and then run the
following command:

$ sudo systemctl enable systemd-script-file-name (.service is omissible)

Example:

$ sudo systemctl enable people_count

To disable automatic startup, run the following command:

$ sudo systemctl disable systemd-script-file-name (.service is omissible)

4. Design of the AI image application functionality

25

4.3 How to start and stop the AI image application
functionality

This section describes how to start and stop the Docker container that provides the AI image application functionality.

To start and stop the Docker container, use the docker-compose command.

To run the docker-compose command, a Compose file is required.

By default, the command reads the current Compose file (docker-compose.yaml or docker-compose.yml),
and then starts or stops the Docker container as specified in the file. For details about the Compose file, see 6.4.2 
Compose file settings.

4.3.1 How to start Docker containers
You can start Docker containers by running the docker-compose command with up or start specified.

To generate and start a new Docker container, specify up. To start a Docker container that has already been generated,
specify start.

To generate and start all Docker containers specified in the Compose file:
To start all Docker containers as daemons, use the -d option.

$ sudo docker-compose up [-d]

To generate and start a Docker container specified (as a service name) in the Compose file:
To start a Docker container as a daemon, use the -d option.

$ sudo docker-compose up [-d] service-name

To connect to a Docker container that is already running and then run the command on the Docker
container:

$ sudo docker-compose exec service-name command

To start all Docker containers that are stopped:

$ sudo docker-compose start

When the OS restarts, all Docker containers that are running will be stopped. If the automatic startup of Docker
containers is disabled, after the OS restarts, specify start to restart the Docker containers.

4.3.2 How to stop Docker containers
You can stop Docker containers by running the docker-compose command with down or stop specified.

To stop and delete all Docker containers, specify down. To stop a specific Docker container or all Docker containers,
specify stop.

To stop and delete all Docker containers specified in the Compose file:

$ sudo docker-compose down

4. Design of the AI image application functionality

26

To stop a Docker container specified (as a service name) in the Compose file:

$ sudo docker-compose stop service-name

To stop all Docker containers specified in the Compose file:

$ sudo docker-compose stop

The Docker containers stopped by specifying stop remain stopped after the OS restarts.

4.3.3 How to check the status of the Docker containers
You can check the status of the Docker containers by specifying the ps option.

$ sudo docker-compose ps

Example of execution results (returned when the command was run with up specified):

 Name Command State Ports
--
edgeadm_test_1 /bin/bash Up

Up is displayed in the State column.

Example of execution results (returned when the command was run with down specified):

 Name Command State Ports
--

Only the header is displayed.

Example of execution results (returned after the command was run with up specified and then run with
stop specified):

 Name Command State Ports
--
edgeadm_test_1 /bin/bash Exit 0

Exit is displayed in the State column.

Example of execution results (returned after the command was run with stop specified and then run with
start or up specified):

 Name Command State Ports
--
edgeadm_test_1 /bin/bash Up

Up is displayed in the State column.

4. Design of the AI image application functionality

27

4.4 Notes on designing a system

4.4.1 Provided container images
The following table lists the Docker container images for the functions provided by the AI image application
functionality.

Table 4‒2: Provided container images

No. Function Repository Container image Tag Redistributable?#

1 Data input function ctrl_edge_ai data_input 1.0 Yes

2 Data management
function

data_manager 1.0 Yes

3 Inference execution
function

openvino_prod 1.0 Yes

4 Inference
development
function

openvino_devel 1.0 No

#
Before using OpenVINO provided by CE50-10A, you must agree to the end user license agreement (EULA) that
appears when you first log in to CE50-10A.
The OpenVINO license prohibits the redistribution of OpenVINO with the exception of certain components. For
example, suppose you develop software by using OpenVINO and then embed the software in CE50-10A. In that
case, delivering CE50-10A to a customer is redistribution.
Before redistributing container images, delete any non-redistributable images by running the following
commands:

$ sudo docker rmi ctrl_edge_ai/openvino_devel:1.0
$ sudo rm -f /hitachi/ctrl_edge_ai/docker_images/openvino_devel_1.0.tar.gz

4.4.2 Automatic restart of Docker containers
If an error occurs in the data input function, data management function, or inference execution function during
operation of CE50-10A, the container of the relevant function ends. You can set the restart option in the Compose
file so that a container that ends due to an error will automatically restart.

For details about how to set the restart option, see 4.1 Using the Compose file to customize the functionality.

However, sometimes an error cannot be corrected by restarting the container (for example, if the camera fails, and the
data input function cannot obtain image data). In such a case, the container of the function attempts to restart for the
preset number of times and then ends. If you encounter such a case, remove the cause of the error that occurred, and
then manually restart the container.

The following figure shows the configuration of containers used during operation of CE50-10A.

4. Design of the AI image application functionality

28

Figure 4‒1: Configuration of the containers used during operation of CE50-10A

The following describes how each function behaves before it recovers from an error that occurred and the status of
image data in the period before recovery.

• If an error occurs in the container of the data input function
If an error (such as one that prevents the reception of image data from a camera) occurs in the container of the data
input function, the container ends. The containers of the data management function and the inference execution
function are placed on standby until they can receive image data. After the error is corrected by restarting the
container, processing restarts. Any image data in the period of time from when the error occurred until the
container was restarted will be lost.

• If an error occurs in the container of the data management function
If an error occurs in the container of the data management function, the container ends. If the container of the data
management function ends, the containers of the data input function and the inference execution function will also
end because they will no longer be able to access the container of the data management function. After the error is
corrected by restarting the container, processing restarts. Any image data in the period of time from when the error
occurred until the container was restarted will be lost.

• If an error occurs in the container of the inference execution function
If an error occurs in the container of the inference execution function, the container ends. While the container of
the inference execution function is stopped, the container of the data management function continues to
accumulate image data. Therefore, after the container of the inference execution function restarts, it starts
performing inference for the files in the container of the data management function in the order in which they were
registered.

4.4.3 Tuning the number of obtained frames
If the frame per second (FPS) of the data input function is greater than the maximum FPS that the inference execution
function can handle, the inference execution function will not be able to process all of the frames. As a result, the
capacity of the data management function might be exceeded. If the amount of data accumulated by the data
management function exceeds the preset maximum, the function deletes the data in order from the oldest data. This
prevents errors in the data management function. However, it is inefficient to discard image data that was received but
cannot be processed. Therefore, we recommend that, before starting operation of CE50-10A (for example, in the
development and testing phase), you check the performance of the inference execution function and configure (tune)
the FPS settings of the data input function and inference execution function. Specifically, make sure that the FPS at
which the data input function registers data in the data management function is less than the FPS of the inference
execution function. For details about the FPS at which the data input function registers data, see the description of the
output > video > fps setting in 5.3.1 Settings of the data input function.

4.4.4 Firewall settings
The following table shows the communications that the AI image application functionality must perform.

4. Design of the AI image application functionality

29

Table 4‒3: Communications the AI image application functionality must perform

No. Function Necessary communication
Direction of

communication
(send/receive)

Remarks

1 Data input function

(if an IP camera is used)
Access to the RTSP port# of
the IP camera

Send Unnecessary if using a USB
camera

2 Data management function API port (TCP/13579) Send --

3 Sample application API port (TCP/5000) Send Required only when using
the sample application

4 Inference development
function

Jupyter Notebook port (8888/
tcp)

Receive --

Legend:
--: Not applicable

#
The Internet Assigned Numbers Authority (IANA) has stipulated that 554/tcp or 554/udp be used.
However, as a countermeasure against port attacks, some commercially available IP cameras use port numbers
other than the stipulated port numbers.

If you use a firewall, consider the following points:

• To use an IP camera, transmission to the RTSP port of the IP camera must be permitted. (Transmission is
prohibited by default.)
For the port number of the RTSP port of the IP camera, see the documentation for the IP camera. (It might be
possible to change the port number.)

• For the APIs of the data management function and sample application, transmission to the local host and reception
from the local host are permitted by default. Therefore, you do not need to specify settings to permit these
communications.

Table 4‒4: List of firewall functions

No. Rule Summary Default

1 Permit reception through
ports

Permits reception through specified ports and
blocks all the other communications.

Security is enhanced by opening only the ports
that need external access.

Disabled

2 Permit transmission through
ports

Permits transmission through specified ports
and blocks all the other communications.

Transmission through the following
ports is permitted:

• SSH (22/tcp)

• DNS (53/udp)

• HTTP (80/tcp)

• NTP (123/tcp)

• HTTPS (443/tcp)

3 Permit reception through
ports

(Restricted)

Permits reception through specified ports but
limits the maximum number of connections
that can be established within a certain period
of time.

This rule is effective as protection from the
following attacks:

• DoS (Denial of Service) attacks

• DDoS (Distributed Denial of Service)
attacks

Limits incoming SSH (22/tcp)
connections to a maximum of 10
per minute

4. Design of the AI image application functionality

30

No. Rule Summary Default

3 Permit reception through
ports

(Restricted)

• Brute-force attacks Limits incoming SSH (22/tcp)
connections to a maximum of 10
per minute

4 Permit transmission and
reception by the local host

Permits communications with the local host
(127.0.0.1) via any ports.

Enabled

4.4.5 Security risks and countermeasures
Depending on the data to be processed by the inference processing program or the environment in which CE50-10A is
used, security risks that have not yet been encountered might arise. The countermeasures that must be taken might
change according to the new risks. If you encounter a new risk, consider all possible countermeasures.

The following figure shows the access routes for the network communications of CE50-10A.

Figure 4‒2: CE50-10A network communication access routes

The following table shows the security risks that might arise during use of CE50-10A and the countermeasures to be
taken for CE50-10A.

Table 4‒5: Security risks and countermeasures for each component

No. Component Data type

Security risk
Measures and
considerationsIf

intercepted If altered If lost

1 Inference
development
function

Communication
for using
Jupyter
Notebook

Videos,
images, and
other types of
data might be
revealed.

The program
might no
longer work
correctly.

The
inference
development
function
would
become
unusable.

• Authentication using a
one-time password is
performed when the
user logs in to Jupyter
Notebook.

• Encryption for
communication routes is
not supported. We
recommend using this
function in an internal
network or other
network in which
wiretapping and

4. Design of the AI image application functionality

31

No. Component Data type

Security risk
Measures and
considerationsIf

intercepted If altered If lost

1 Inference
development
function

Communication
for using
Jupyter
Notebook

Videos,
images, and
other types of
data might be
revealed.

The program
might no
longer work
correctly.

The
inference
development
function
would
become
unusable.

falsification occur less
frequently.

2 IP camera Videos and
images

Videos,
images, and
other types of
data might be
revealed.

The
inference
execution
function
might output
incorrect
results.

The
reception of
videos and
images
would
become
impossible.

• Measures are needed on
the IP-camera side.
(Measures on the
CE50-10A side are
unnecessary.)

• Use an IP camera that
supports authentication
by using IDs and
passwords. The data
input function supports
authentication by using
IDs and passwords.

• Encryption for
communication routes is
not supported. We
recommend using this
function in an internal
network or other
network in which
wiretapping and
falsification occur less
frequently.

3 Data
management
function

Data generated
by CE50-10A

Videos,
images, and
other types of
data might be
revealed.

The
inference
execution
function
might output
incorrect
results.

Received
videos and
images
would be
lost.

• The data management
function does not
provide an
authentication function.

• Access to the data
management function is
blocked by a firewall.

4. Design of the AI image application functionality

32

5 Data input function
This chapter provides an overview of the data input function. This chapter also
describes how to connect a camera and set up the function.

33

5.1 Overview of the data input function
The data input function controls the following processes:

• The data input function obtains visual data from an IP camera or USB camera and outputs the data as visual files.
It then passes the files to the data management function.

• The data input function provides a preview of the visual data captured by the connected camera on a monitor. This
can be used to verify camera operation.

5. Data input function

34

5.2 How to connect a camera
This section describes how to connect a camera to CE50-10A.

5.2.1 Connecting a USB camera
To use a USB camera, connect the camera cable to a USB port of CE50-10A.

Figure 5‒1: Connecting a USB camera

5.2.2 Connecting an IP camera
An IP camera can be connected in the following two ways:

• Directly connect the LAN ports of an IP camera and CE50-10A with a LAN cable.

• Connect an IP camera and CE50-10A to a network so that they can directly communicate with each other through
switching hubs and/or routers.

For an IP camera, assign an IP address.

Figure 5‒2: Connecting an IP camera

5. Data input function

35

5.3 How to specify the settings of the data input function
This section describes the settings of the camera that captures visual data, the settings related to the generated visual
files, and the settings for previewing the visual data captured by the camera.

5.3.1 Settings of the data input function
The settings of the data input function are specified in JSON format. In the container of the data input function,
specify the settings for Docker so that they can be accessed at the following path:

/config/data_input.json

For details about the settings to be specified on the container side, see 5.3.2 Container settings.

The following table describes the setting items to be specified.

If multiple instances of the same item are specified in the settings file, the last specification overrides the others.

Table 5‒1: Setting items of the data input function

No. Item Required or optional Description

1 camera Required Specifies the settings related to the camera.

For details about this item, see Table 5‒2: Sub-items of camera.

2 output Optional Specifies the settings for storing received visual data in the data
management function. If this item is omitted, the data input
function does not output visual data.

For details about this item, see Table 5‒6: Sub-items of output.

3 preview Optional Specifies the settings for previewing the visual data captured by
the camera.

If this item is omitted, the data input function does not provide a
preview.

For details about this item, see Table 5‒8: Sub-item of preview.

Table 5‒2: Sub-items of camera

No. Item Required or optional Description

1 name# Required Specifies a camera ID. Specify an ID that uniquely identifies the
camera.

2 type Required Specifies the type of the camera to be used. Specify either of the
following values:

"usb": USB camera

"ip": IP camera

3 connect Required Specifies the camera connection information.

For details about how to specify the camera connection
information, see Table 5‒3: Sub-items of connect USB cameras
(type="usb") or Table 5‒4: Sub-items of connect for IP cameras
(type="ip").

4 video Required Specifies the information about video data to be received from the
camera.

For details about this item, see Table 5‒5: Sub-items of camera-
video.

#
The camera ID can consist of alphabetic characters and underscores (_) only. The camera ID can have no more
than 31 characters.

5. Data input function

36

Table 5‒3: Sub-items of connect USB cameras (type="usb")

No. Item Required or optional Description

1 device Required Specifies the path of the device file for the USB camera.

Table 5‒4: Sub-items of connect for IP cameras (type="ip")

No. Item Required or optional Description

1 rtsp_url Required Specifies the RTSP URL of the IP camera. If authentication using
an ID and password is performed, include the ID and password in
the URL.

For details, see Example of the settings for receiving visual data
from an IP camera.

2 latency Required Specifies the buffer time (in milliseconds) for the visual data
received from the IP camera.

Table 5‒5: Sub-items of camera-video

No. Item Required or optional Description

1 width Required Specifies the frame width (in pixels) that is used to determine the
frame resolution.#

2 height Required Specifies the frame height (in pixels) that is used to determine the
frame resolution.#

3 fps Required Specifies the number of visual data frames to be received per
second.#

4 codec Required Specifies the codec to be used for the received video. Specify one
of the following values:

• "YUYV": Non-compressed

• "MJPEG": Motion-JPEG

• "H264": H.264

#

• The specifiable resolution and frame rate ranges are as follows:
Resolution: 640 x 480 to 3,840 x 2,160
Frame rate: 1 to 30

• If you specify a value that is not supported by the camera, the specification is ignored, and either an error
occurs or a different value is set.
For the values that can be specified, see the documentation for the camera.

Table 5‒6: Sub-items of output

No. Item Required or optional Description

1 type Required Specifies the data output method. Specify either of the
following values:

• "frame": Outputs each frame of the video as a picture
file.

• "video": Outputs the video as video files each of a
certain length.

2 output_dir Required Specifies the path of the output destination directory.
Specify the path of the directory that is the mount point of
the input volume for the data management function.

5. Data input function

37

No. Item Required or optional Description

3 duration# Required if
type="video" is
specified

Specifies the length (in seconds) of each video file.

4 api_url Required Specifies the URL of the API for the data management
function.

Example: http://127.0.0.1:13579

5 video Required Specifies information about the video to be output.

For details about this item, see Table 5‒7: Sub-items of
output-video.

#
We recommend that you set 30 or more seconds. If you set a length shorter than 30 seconds, the actual length of
each video file might differ from the length that you set.

Table 5‒7: Sub-items of output-video

No. Item Required or optional Description

1 width Required Specifies the frame width (in pixels) that is used to determine the
frame resolution.#

2 height Required Specifies the frame height (in pixels) that is used to determine the
frame resolution.#

3 fps Required Specifies the number of visual data frames to be received per
second.#

4 codec Required Specifies the codec to be used for files.

• If "type"="frame" is specified, you can specify "JPEG"
only.

• If "type"="video" is specified, you can specify "H264"
only.

#

• The specifiable resolution and frame rate ranges are as follows:
Resolution: 1 x 1 to 3,840 x 2,160
Frame rate: 1 to 30

• The resolution is increased or decreased according to the values that are set.
If the fps value is larger than the number of incoming frames, the function continues outputting the same
frame. If the fps value is smaller than the number of incoming frames, the function skips some frames. The
data flow is adjusted in this way.

Table 5‒8: Sub-item of preview

No. Item Required or optional Description

1 type Required Specifies the preview method:

• "x11": Uses X forwarding to provide a preview.

Example of the settings for receiving visual data from a USB camera
The following shows the path of a sample file and the example settings included in the sample file.

/hitachi/ctrl_edge_ai/sample/data_input/config_usb_cam.json

5. Data input function

38

{
 "camera": {
 "name":"camera_no1",
 "type": "usb",
 "connect":{
 "device”: "/dev/video0”
 },
 "video":{
 "width":1920,
 "height":1080,
 "fps":30,
 "codec":"MJPEG"
 }
 },
 "output": {
 "type": "frame",
 "output_dir":"/video",
 "video":{
 "width":640,
 "height":480,
 "fps":30,
 "codec":"JPEG"
 },
 "api_url":"http://127.0.0.1:13579"
 }
}

Example of the settings for receiving visual data from an IP camera
The following shows the path of a sample file and the example settings included in the sample file.

/hitachi/ctrl_edge_ai/sample/data_input/config_ip_cam.json

{
 "camera": {
 "name":"camera_no1",
 "type": "ip",
 "connect":{
 "rtsp_url":"rtsp://id:password@192.168.10.129:48512/ipcam_h264.sdp",
 "latency":2000
 },
 "video":{
 "width":1920,
 "height":1080,
 "fps":30,
 "codec":"H264"
 }
 },
 "output": {
 "type": "video",
 "output_dir":"/video",
 "duration": 30,
 "video":{
 "width":640,
 "height":480,
 "fps":30,
 "codec":"H264"
 },
 "api_url":"http://127.0.0.1:13579"
 }
}

5.3.2 Container settings
This section describes the settings that are required for the container of the data input function. For details about
building a container, see 4.1 Using the Compose file to customize the functionality.

Settings for using a GPU
The container of the data input function uses a GPU to decode or encode the received video data.

To make GPU processing available for the container of the data input function, specify the following settings:

5. Data input function

39

Settings:
Add /dev/dri to the devices: item in the Compose file.

devices:
 - "/dev/dri:/dev/dri"

Settings for using a USB camera
To use a USB camera, specify the settings so that the device file for the USB camera can be accessed from the
container of the data input function. This specification is unnecessary if you are using an IP camera.

The device files corresponding to connected USB cameras are generated on the host in the /dev directory. These
device files are assigned names in videoX format (for example, video0, video1, ...).

Use the ls command or another means to check the name of the device file for the USB camera that you want to use,
and then specify the settings so that the device file can be used in the container of the data input function.

Setting example:
In the Compose file, add the path of the device file that you checked to the settings of the container of the data
input function.

devices:
 - "/dev/dri:/dev/dri"
 - "/dev/video0:/dev/video0"

Making the settings file on the host accessible to the container
Make sure that the settings file shown in 5.3.1 Settings of the data input function can be accessed from the container
of the data input function. The procedure is as follows.

Mount the path of the settings file (data_input.json) on the host to /config/data_input.json in the
container of the data input function.

volumes:
 - "path-of-data_input.json-on-the-host:/config/data_input.json"

Setting example:

volumes:
 - "/hitachi/ctrl_edge_ai/sample/data_inpuit/usb_cam.json:/config/data_input.jso
n"

5. Data input function

40

5.4 Procedure for verifying operation
This section describes the procedure for verifying that the data input function has been connected to the camera.

1. Access CE50-10A.
Directly connect a display, keyboard, and mouse to CE50-10A, and then access CE50-10A.

2. Start the desktop. (For details, see Starting the desktop in the CE50-10 Instruction Manual.)

3. When the desktop appears, log in as a user with sudo privileges (for example, edgeadm).

4. Create the settings file (data_input.json), and then save it to a path of your choice on the OS.
For details about how to specify the settings in the settings file, see 5.3.1 Settings of the data input function. The
following is an example when the settings file is saved in /home/edgeadm/preview.
Example of the settings in the data_input.json file for receiving visual data from a USB camera:

{
 "camera": {
 "name":"camera_no1",
 "type": "usb",
 "connect":{
 "device": "/dev/video0"
 },
 "video":{
 "width":640, "height":480, "fps":30, "codec":"MJPEG"
 }
 },
 "preview": {
 "type": "x11"
 }
}

5. Create the settings file (data_input.json), and then save it to a path of your choice on the OS.
For details about how to specify the settings in the settings file, see 5.3.1 Settings of the data input function. The
following is an example when the settings file is saved in /home/edgeadm/preview.

6. Create a Compose file, and then save it to a path of your choice on the OS.
For details about how to specify the settings in a Compose file, see 4.1 Using the Compose file to customize the
functionality and 5.3.2 Container settings.
The following is an example when the Compose file is saved in /home/edgeadm/preview.
Example of the settings for providing a preview of visual data from a USB camera:

version: '3'
services:
 preview:
 ipc: host
 image: ctrl_edge_ai/data_input:1.0
 network_mode: "host"
 devices:
 - "/dev/dri:/dev/dri"
 - "/dev/video0:/dev/video0"
 volumes:
 - "./data_input.json:/config/data_input.json"
 - /tmp/.X11-unix:/tmp/.X11-unix
 environment:
 DISPLAY: $DISPLAY

7. Run the following command:

$ sudo docker-compose up

The video captured by the camera is displayed according to the settings specified in the data_input.json
file.

5. Data input function

41

Figure 5‒3: Example of displayed video

The source of the sample video is as follows:

https://github.com/intel-iot-devkit/sample-videos/raw/master/car-detection.mp4

8. To end the preview, click the close (X) button at the top right of the window.

5. Data input function

42

6 Data management function
This chapter provides an overview of the data management function. This chapter
also describes the API and library specifications, and how to set up the function.

43

6.1 Overview of the data management function
The data management function acts as a queue that temporarily holds visual files between the data input function and
the inference execution function. The following figure shows the flow of visual files and management information.

Figure 6‒1: Flow of visual files and management information handled by the data management function

The processing performed by the data management function is as follows.

Registering files:
This processing accepts inference-target visual files and registers them in a data management table.

The data input function registers files automatically, so you do not need to do anything in particular. Note, however,
that there might be cases where visual data passed as a file by an image inspection device or other non-camera device
is to be registered as a file in the container of the data management function. In such a case, you will need to create a
program that performs the API operations described later. For details about how to use the API, see 6.2 API
specifications of the data management function.

The containers of the data input function and data management function use volumes to share files.

The following shows the procedure for registering a file in the data management function:

1. Save the target file in the /input directory of the container of the data management function.

6. Data management function

44

2. Use the POST method to issue a request to the API (/v1/files) to register the file, where the request includes
the path of the saved file.
The API registers the file name in the data management table. At this time, the file is registered as a file in the
ADDED status.
The API then moves the file from the /input directory to the /storage directory.

Receiving files and changing the status:
This processing identifies and retrieves inference-target visual files. The image collection library of the inference
execution function or inference development function automatically performs the following procedure, so you do not
need to do anything in particular. Perform the following procedure if you receive visual data without using the image
collection library:

1. Use the GET method to issue a request to the API (/v1/files) to receive a file that is in the ADDED status.
The API returns the name of a file in the ADDED status from the data management table according to the
specified option.

2. Issue a request to the API to change the status of the file received in step 1 to PROCESSING.

3. Perform inference for the file at the returned path.

4. When inference is complete, issue a request to the API (/v1/files/file_id) to change the status of the file
received in step 1 to COMPLETED.

If the image collection library of the inference execution function or inference development function is used, the
preceding procedure (steps 1 to 4) are performed automatically.

Deleting files:
This processing reads the information in the data management table and automatically deletes files registered in the
table. The upper limit on the total size of files in the ADDED and COMPLETED statuses is specified in the settings
file of the data management function. If the upper limit is exceeded, registered files are deleted in order from the
oldest files.

6. Data management function

45

6.2 API specifications of the data management function
The API methods that register files, receive file, and perform other operations in the data management function are
provided by the HTTP REST API. This API uses port 13579 of the container of the data management function.

Example of the access URL:

http://127.0.0.1:13579/v1/files

In the descriptions in the subsequent sections, the protocol://host-name:13579 portion of the URL is referred to as
the base-URL.

6.2.1 Registering a file in the data management function (v1FilesPost)
The method that registers a file at a specified path in the database is as follows.

Request line

POST base-URL/v1/files

Request message

Body

{
 "camera_id" :"camera_1"
 "input_path" :"/path/to/file"
 "status" :"added"
}

No. Attribute Data type Description

1 camera_id String (Optional item) Specify the camera ID.

Example: camera_1

2 input_path String (Optional item) Specify the path to which the file is to be registered.

Example: /path/to/file

3 status String (Optional item) Specify the status of the file.

Example: added

Response message

Body

{
 "file_id" : "cf16fe52-3365-3a1f-8572-288d8d2aaa46"
}

No. Attribute Data type Description

1 file_id String Returns the assigned file ID.

Example: cf16fe52-3365-3a1f-8572-288d8d2aaa46

Status codes

No. Status code Description

1 200 Registration was successful.

2 400 Invalid request

6. Data management function

46

No. Status code Description

3 503 An error occurred on the server side.

6.2.2 Updating file status (v1FilesFileIdPut)
The method that changes the status of a registered file is as follows.

Request line

PUT base-URL/v1/files/file_id

No. Attribute Data type Description

1 file_id String (Required item) Specify the file ID.

Example: cf16fe52-3365-3a1f-8572-288d8d2aaa46

Request message

Body

{
 "status" :"completed"
}

No. Attribute Data type Description

1 status String (Required item) Specifies the file status.

Example: completed

Response message

Status codes

No. Status code Description

1 200 Update was successful.

2 400 Invalid request

3 404 file_id was not found.

4 503 An error occurred on the server side.

6.2.3 Receiving files (v1FilesGet)
The method that receives files held by the data management function is as follows.

Request line

GET base-URL/v1/files

6. Data management function

47

Request message

Query parameters

No. Attribute Data type Description

1 num integer (Optional item) Specify the number of files to be received. The default is 1.

2 camera_id string (Optional item) Specify the camera IDs. If this item is omitted, the method
assumes that all camera IDs are specified. To specify multiple camera IDs,
use the following format:?
camera_id=camera_1&camera_id=camera_2...

3 order string (Optional item) Specify the order in which the files are to be received.

LIFO: Receive newer files first (default).

FIFO: Receive older files first.

Response message

Body

[
 {
 "file_id" : "cf16fe52-3365-3a1f-8572-288d8d2aaa46",
 "path" : "/path/to/file",
 "camera_id" : "camera_2"
 }
]

No. Attribute Data type Description

1 file_id String Returns the file IDs.

2 path String Returns the registration destination path.

3 camera_id String Returns the camera IDs.

Status codes

No. Status code Description

1 200 Reception was successful.

2 400 Invalid request

3 503 An error occurred on the server side.

6. Data management function

48

6.3 Specifications of the library available for the data
management function

This section describes how to use the image collection library that uses the data management function from a Python
program.

The image collection library is provided as a module named Dataman.

6.3.1 Library usage
Dataman can be used by the inference execution and inference development functions.

The inference processing program used by the inference execution function and Jupyter Notebook used by the
inference development function receive frames from the data management function.

You can specify settings to enable debug mode. In this mode, the aforementioned components receive frames from the
visual file specified for debugging, without accessing the data management function.

6.3.2 Settings for using the library
Before Dataman can be used, you must set up an operation to load the settings file during initialization.

Path of the sample settings file:

/hitachi/crtl_edge_ai/sample/dataman/dataman.json

Table 6‒1: Setting items

No. Setting item Description

1 api_url Specifies the URL of the API for the data management function.

2 frame_order Specifies the order in which the images are to be received.

• "LIFO": Receives newer images first (initial value).

• "FIFO": Receives older images first.

3 target_camera Specifies the IDs of the cameras from which images are to be received.

Setting example:
["camera_1","camera_2"]
To receive images from all cameras, specify [].
The initial value is [].

4 debug Specify this item to debug the inference execution function.

If you specify debug, the api_url, frame_order, and target_camera setting
items are disabled.

For details about this item, see Table 6‒2: Sub-item of debug.

Table 6‒2: Sub-item of debug

No. Item Description

1 file_path Specifies the visual file to be used.

Setting example 1:

{
 "api_url":" "http://127.0.0.1:13579",
 "frame_order": "LIFO",
 "target_camera": []
}

6. Data management function

49

Setting example 2:

{
 "debug":{
 "file_path": "/hitachi/people_count_sample/sample_video.mp4"
 }
}

6.3.3 How to import the library
For the Python program used by the inference execution function or Jupyter Notebook used by the inference
development function, the library to be used is imported as follows. The Dataman module is included in the
ce50.ai package.

from ce50.ai import *

6.3.4 Dataman class methods
This section describes the specifications of the Dataman class methods used in the data management function.

(1) class Dataman.Dataman(conf_path)

Base class: object
Class for operating the data management function
Constructor

Parameter: conf_path (str)
Path of the settings file

Sample:

>>> # To generate an instance of the Dataman class.
>>> dm=Dataman("/hitachi/people_count_sample/dataman/dataman.json")

(2) get_frame()
This method acquires an image frame subject to inference and returns it as a cv::Mat type. This method can be used
in the same way as the read() method in the VideoCapture class of OpenCV.

In debug mode, this method acquires the picture or video frames of the visual file specified for debugging. After the
method finishes reading all of the frames in the file, it rereads the file starting from the first frame. If the specified file
is a picture file, the method always acquires the same image.

Return values:
return: Whether frame acquisition was successful (success: True, failure: False)
info: Frame information
frame: Image data

Types of return values: bool, dict, and cv::Mat

Sample:

>>> ret, info, frame = db.get_frame()

(3) set_target_camera(camera_id)
This method specifies for the get_frame method to acquire images from cameras whose IDs were specified.

If this method is run in debug mode, the method does not do anything.

6. Data management function

50

Parameter: camera_id_list (array)
Camera IDs

Sample:

>>> # To receive images from only camera_1.
>>> dm.set_target_camera(["camera_1"])
>>> # To receive images from all cameras.
>>> dm.set_target_camera([])

(4) update_frame_status(info, status)
This method changes the status of the frame that has the specified frame ID.

If this method is run in debug mode, the method does not do anything.

Parameters:
info (dict): Information about the target frame
status (str): New status

Sample:

>>> # To change the status of an inferred frame to "COMPLETED".
>>> dm.update_frame_status(info, Dataman.STATUS_COMPLETED)

6.3.5 Constants for file statuses
The following table shows the constants that indicate the file statuses defined in the Dataman class.

Table 6‒3: Constants for the file statuses

No. Constant Description

1 STATUS_ADDED These constants are used to indicate the status of a video.

For example, STATUS_ADDED indicates that inference has not started yet.2 STATUS_PROCESSING

3 STATUS_COMPLETED

6. Data management function

51

6.4 How to specify the settings of the data management
function

This section describes the settings file and Compose file for the data management function.

6.4.1 Settings file for the data management function
If you want to use a settings file for the data management function, save the file to the following path in the container
of the data management function.

If no settings file exists, default settings are used.

/config/data_manager.json

Table 6‒4: Setting item in the settings file

No. Item Required or optional Description

1 delete Required Specifies the settings related to deletion.

For details about this item, see Table 6‒5: Sub-items of delete.

Table 6‒5: Sub-items of delete

No. Item Required or optional Description

1 unfinished_limi
t

Required Specifies the upper limit on the total size (in KB) of files whose
status is not COMPLETED.

The default is 1048576 (KB).

If you specify a value greater than the size of free space on the data
storage volume, an error occurs.

2 finished_limit Required Specifies the upper limit on the total size (in KB) of files whose
status is COMPLETED.

The default is 0 (KB).

If you specify a value greater than the size of free space on the data
storage volume, an error occurs.

Setting example:

{
 "delete":{
 "unfinished_limit":1048576,
 "finished_limit":0
 }
}

6.4.2 Compose file settings
When you specify the settings of a Compose file, take the following into consideration.

(1) Considerations for creating volumes
For CE50-10A, volumes must be created to share data between containers as follows:

• A volume between the container of the data input function and that of the data management function

• A volume between the container of the data management function and that of the inference execution function

Make sure that each volume is mounted to the same path on both containers.

6. Data management function

52

The volumes for holding data can be created in either of the following locations:

1. SSD (Docker-only partition)

2. Main memory

In general, create the volumes in location 1.

The following table shows the advantages and disadvantages of each of the two locations.

Location Advantage Disadvantage

1. SSD (Docker-only
partition)

Data can be held persistently. The data is retained
even if an abnormality such as a power failure
occurs.

• The write speed is slower than the speed of
writing to main memory.

• Repeatedly writing large amounts of data will
shorten the lifetime of the SSD.

2. Main memory Data is written at a high speed. • The data is not persistent. If an abnormality
occurs or the container stops, data will be
lost.

• Storing a large amount of data reduces the
amount of usable main memory.

Based on the advantages and disadvantages in this table, we recommend that you create the volumes as follows:

Containers that will share data Where to create the volume

The containers of the data input function container and data
management function

2. Main memory

The containers of the data management function container and
inference execution function#

1. SSD (Docker-only partition)

#
If the amount of data written per day is 50 GB or more, the actual lifetime of the SSD might be shorter than the
expected lifetime. Therefore, you might need to consider creating the volume on main memory depending on the
requirements for the system (such as the required availability, lifetime, and frequency of maintenance).

Setting example:
In this example, you will create volumes as follows for the containers of the functions that share data:

• Volume between the containers of the data input function and data management function: input_volume (in
the main memory)
Path of the mount point: /input

• Volume between the containers of the data management function and inference execution function:
storage_volume (on an SSD)
Path of the mount point: /storage

The following is an example of the settings to be specified. Note that this example is an excerpt of only the relevant
entries.

services:
 data_input:
 image: ctrl_edge_ai/data_input:1.0
 volumes:
 - input_volume :/input
 data_manager:
 image: ctrl_edge_ai/data_manager:1.0
 volumes:
 - input_volume:/input
 - storage_volume:/storage
 people_count:
 image: people_count:latest
 volumes:
 - storage_volume:/storage

6. Data management function

53

volumes:
 input_volume:
 driver: local
 driver_opts:
 type: tmpfs
 device: tmpfs
 o: "size=512m"
 storage_volume:
 driver: local

(2) Port settings
Specify settings so that the port used by the API for the container of the data management function can be accessed
from the containers of other functions.

The following is an example of the settings to be specified. Note that this example is an excerpt of only the relevant
entries.

Setting example:

services:
 data_manager:
 network_mode: host

6. Data management function

54

7 Inference execution function
This chapter provides an overview of the inference execution function, the general
procedure for implementing inference processing, and sample programs.

55

7.1 Overview of the inference execution function
Visual data is imported by the data input function and then registered in a volume as visual files by the data
management function. The inference execution function retrieves the inference-target visual files from the volume and
then performs inference for those files.

The inference execution function performs inference processing created in Python.

To perform inference processing, you must prepare the following two items:

• The inference-processing execution program

• An intermediate representation (called IR in OpenVINO), which is the result of converting a pre-trained model

The following table provides an overview of the processing of an inference-processing execution program and a pre-
trained model.

Table 7‒1: Overview of the processing of an inference-processing execution program and a pre-trained
model

No. Item Processing overview

1 Inference-processing
execution program

The inference-processing execution program specifies the initial settings that are required to
read a pre-trained model and perform inference processing. The program also performs
preprocessing to convert loaded images to another format and displays the inference results.

2 Pre-trained model A pre-trained model performs inference based on the input information and outputs the
inference results. The types of images for which inference processing can be performed and
the inference results (such as the number of people detected and the detected coordinates)
vary depending on the pre-trained model that is used.

7.1.1 How to obtain the pre-trained models provided for use with
OpenVINO

You can obtain pre-trained models from the following website.

Website for downloading pre-trained models:

https://download.01.org/opencv/

You can download pre-trained models by directly accessing this website. You can also use Model Downloader, which
is a function of OpenVINO.

For details about how to use Model Downloader, see the following webpage.

Webpage about how to use Model Downloader:

https://docs.openvinotoolkit.org/2020.3/_tools_downloader_README.html#

#
The information in this manual is based on OpenVINO version 2020.3. If a newer version of OpenVINO is
available, check the information about the new version. Such information can be found, for example, on the Intel
website.

7.1.2 Converting a pre-trained model into an intermediate representation
Pre-trained models that users create by using TensorFlow or Caffe can also be used with OpenVINO. In this case, the
pre-trained models must be converted into intermediate representations.

OpenVINO provides Model Optimizer, which is a function that converts a user-created pre-trained model into an
intermediate representation. Model Optimizer can be used to create intermediate representations of pre-trained
models. For details about how to convert a pre-trained model into an intermediate representation, see the following
webpage:

7. Inference execution function

56

Webpage about how to convert a pre-trained model into an intermediate representation:

https://docs.openvinotoolkit.org/2020.3/_docs_MO_DG_prepare_model_convert_model_Con
verting_Model.html

7. Inference execution function

57

7.2 Overview of implementing inference processing
This section describes how to implement user-developed inference processing in the inference execution function. The
following figure provides an overview of implementing inference processing.

Figure 7‒1: Overview of implementing inference processing

7.2.1 How to implement inference processing
This section describes how to implement inference processing.

(1) Deploying the files necessary to perform inference processing on the host
You need to prepare two types of files to perform inference processing: files for an inference-processing execution
program and files for a pre-trained model.

Examples of these files are included in the following sample program provided with CE50-10A.

You can change the names of the directories in the following file structure as you like.

/hitachi/ctrl_edge_ai/sample/people_count/
 |- AP
 |- people_count_sample_via_video
 | |- Dockerfile
 | |- docker-compose.yaml
 | |- component
 | |- people_count_demo.py
 | |- model_path.json
 | |- sample_video.mp4
 | |- dataman.json
 | |- openvino_models
 | |- face-detection-retail-0004.bin
 | |- face-detection-retail-0004.xml
 |- people_count_sample_via_usbcam
 |- Dockerfile
 |- docker-compose.yaml
 |- component
 |- people_count_demo.py
 |- model_path.json
 |- dataman.json
 |- openvino_models
 |- face-detection-retail-0004.bin
 |- face-detection-retail-0004.xml

7. Inference execution function

58

The following table describes the items in this sample program.

Table 7‒2: Items in the sample program

No. File name Description

1 AP A program that starts an HTTP server so that the AP indicator lights up when the
sample program is executed as a demo.

2 Dockerfile A file for creating a Docker image that runs a demo to count the number of people in a
sample video or the information received from a USB camera. This file is used during
processing to build a Docker container.

3 docker-compose.yaml A settings file for starting a container from the created Docker image.

4 people_count_demo.p
y

A program that performs inference processing.

5 model_path.json A file in which the path of the pre-trained model is specified.

This file is loaded when people_count_demo.py is run.

6 sample_video.mp4#1 A video file used to perform the demo. The name of this file is fixed as
sample_video.mp4.

7 dataman.json A file in which the method for receiving data from the data management function is
specified.

8 face-detection-
retail-0004.bin#2

A pre-trained model file in which the weight information is specified.

9 face-detection-
retail-0004.xml#2

A pre-trained model file in which the network information is specified.

#1

• Characteristics required of the video file
In a demo that uses a sample video, human faces are detected and the number of people detected is displayed.
Alternatively, the detected faces are enclosed in a rectangular frame in the preview. For these functions to
work properly, we recommend that you use a sample video that has the following characteristics:
- The video includes people's faces.
- The number of faces captured on video changes over the course of the video.

• Sample video file that can be used
You can download a sample video file from the following webpage and use it for demos. By using this video
file for demos, you can check how faces are detected and how the number of detected faces changes.

https://github.com/intel-iot-devkit/sample-videos/raw/master/face-demographics-w
alking-and-pause.mp4

• How to deploy the sample video
After you have downloaded the video file, rename it to sample_video.mp4, and then copy it to the
appropriate directory as shown in (1) Deploying the files necessary to perform inference processing on the
host.
If you redistribute the sample program to end users after the demo, make sure that the sample program does
not include any videos that infringe on someone's copyright or portrait right. If the sample program includes
such videos, delete them before redistributing the sample program.

#2
The pre-trained model file can be downloaded from the following website:

https://download.01.org/opencv/2020/openvinotoolkit/2020.3/open_model_zoo/models_bi
n/1/face-detection-retail-0004/FP16/

(2) Creating a Docker image with a file installed
Perform the following procedure to create a Docker image:

7. Inference execution function

59

1. Run the following command to create a Dockerfile in a directory of your choice.

$ sudo vi Dockerfile

In the Dockerfile, specify the location (path on the host) of the file to be copied by using the COPY command and
the container to which the file is to be copied.
Example of the settings in the Dockerfile:

FROM ctrl_edge_ai/openvino_prod:1.0
COPY ./component /hitachi/people_count_sample
CMD ["/hitachi/people_count_sample/people_count_demo.py"]

Commands used in the Dockerfile:

• FROM
Specify the name of the base Docker image. To use the inference execution function, specify
ctrl_edge_ai/openvino_prod:1.0.

• CMD
Specify the path (in the container) of the Python file that contains the inference processing to be performed
when the container is run.

2. Change the current directory to the directory that contains the Dockerfile and build the Dockerfile into a Docker
image named people_count. To do this, run the following commands:

$ cd path-of-the-directory-containing-the-Dockerfile
$ sudo docker build . -t people_count:latest

(3) Settings in the Compose file
In (2) Creating a Docker image with a file installed, you created a Docker image. Here, you will create a container
from the Docker image, and then create a Compose file so that inference processing can be performed. For details
about how to create a Compose file, see 4.1 Using the Compose file to customize the functionality.

Example of the settings specified in the Compose file:

services:
 people_count:
 image: people_count:latest

If a GPU is to be used during inference processing, add the devices option to the people_count container in the
Compose file.

Example of the settings specified in the Compose file if a GPU is to be used:

services:
 people_count:
 image: people_count:latest
 devices:
 -"/dev/dri:/dev/dri"

If a GPU is used, the pre-trained model must be converted into a format compatible with the GPU. Therefore, it will
take a few minutes to read the pre-trained model.

The conversion results can be cached in the directory specified in the cl_cache_dir environment variable. If the
conversion results of a pre-trained model are cached, the next time the model needs to be read, it will take less time.

The following is an example of the settings to be specified in the Compose file if the cache is to be used. Note that this
example is an excerpt of only the relevant entries.

Example of the settings specified in the Compose file if the cl_cache_dir environment variable is specified:

services:
 people_count:
 image: people_count:latest
 environment:
 cl_cache_dir: "/cl_cache"
 volumes:
 - /home/edgeadm/cl_cache:/cl_cache

7. Inference execution function

60

Note that, if you start a container as a general user, you will need to change the permissions of the directory specified
for the environment variable so that the cached data is retained. Make sure that all users are permitted to perform read,
write, and run operations on the cache directory. To do this, add processing to change the permissions of the directory
where you want to retain the cache when you build the Dockerfile.

The following is an example of the settings in a Dockerfile to which processing to change directory permissions has
been added.

Example of the settings specified in the Dockerfile to change the directory permissions:

FROM ctrl_edge_ai/openvino_prod:1.0

Specify the user (root) who can access the Dockerfile.
USER root

Create a cache directory and change the permissions.
RUN mkdir /cl_cache
RUN chmod 777 /cl_cache

Specify a general user when the container starts.
USER openvino

Set the environment variable.
ENV cl_cache_dir=/cl_cache

Set the program to be run when the container starts.
CMD ["/hitachi/people_count_sample/people_count_sample.py"]

If you want to include the cache in the Docker image in the production environment, you can save the cache on the
host and then have the cache on the host included in the Docker image when the Dockerfile is built.

To mount a host directory from a container that was started by a general user so that cached data remains on the host
even after the container is deleted, you must change not only the permissions for the directory in the container, but
also the permissions for the host directory.

The following examples show the commands for changing the permissions for the host directory, and the settings in
the Dockerfile when data cached on the host is to be included in the Docker image.

Example of the commands for changing the permissions for the host directory:

Change permissions for the host directory to be mounted to a container.
$ sudo chmod 777 /home/edgeadm/cl_cache

Start the container so that data is cached on the host.
$ sudo docker-compose up -d

Example of the settings in the Dockerfile when data cached on the host is to be included in the Docker image:

FROM ctrl_edge_ai/openvino_prod:1.0

Specify the user (root) who can access the Dockerfile.
USER root

Include the data cached on the host in the Docker image.
COPY relative-path-of-the-cl_cache-directory/* /cl_cache

Change the permissions of the directory.
RUN chmod 777 /cl_cache

Specify a general user when the container starts.
USER openvino

Set the environment variable.
ENV cl_cache_dir=/cl_cache

Set the program to be run when the container starts.
CMD ["/hitachi/people_count_sample/people_count_sample.py"]

(4) Starting the container and running inference processing
Run the following command to start the container and perform inference processing.

$ sudo docker-compose up -d

7. Inference execution function

61

7.3 Description of the sample program
CE50-10A provides a sample program. The source code is in the following file:

/hitachi/ctrl_edge_ai/sample/people_count/people_count_sample_via_video/component/peop
le_count_demo.py

7.3.1 Processing performed by the sample program
This section describes the processing performed by the sample program (people_count_demo.py) provided with
CE50-10A. The pre-trained model used in the sample program is face-detection-retail-0004.

The information input and output for face-detection-retail-0004 is as follows.

• Input information: [1x3x300x300] (= batch size x number of channels x image height x image width)

• Output information: [1, 1, N, 7] (N: number of detected bounding boxes)

For details about the input information and output information, see the following webpage:

https://docs.openvinotoolkit.org/2020.3/_models_intel_face_detection_retail_0004_descr
iption_face_detection_retail_0004.html

The sample program performs inference preprocessing and inference processing. It also turns the AP indicator on.

The following figure provides an overview of the processing performed by the provided sample program.

Figure 7‒2: Overview of the processing performed by the provided sample program

(1) Initial setup
In this step, the sample program performs the following six operations:

7. Inference execution function

62

[1] Read libraries.
The sample program reads the following five libraries, which are used for inference:

• cv2: Library for image processing (Python wrapper for OpenCV)

• json: Library for handling the JSON format

• numpy: Library for numerical calculation

• IECore: Library for the inference engine of OpenVINO

• Dataman: Library for retrieving images from the container of the data management function

The relevant source code is as follows:

Read libraries.
import cv2
import numpy as np
import json
import requests

from openvino.inference_engine import IECore
Data management function library
from ce50.ai import *

[2] Create instances from the IECore and Dataman classes.
The sample program creates an IECore instance and a Dataman instance from the libraries that were read in
[1].
For details about the IECore class, see the following webpage:

https://docs.openvinotoolkit.org/2020.3/ie_python_api/classie__api_1_1IECore.html#a
fe73d64ddd115a41f5acc0d31031f52b

The relevant source code is as follows:

Create instance ie from class IECore of Inference Engine.
ie = IECore()
Create instance dm of class Dataman.
dm = Dataman ("/hitachi/people_count_sample/dataman.json")

[3] Specify the paths of the pre-trained model files and read the pre-trained model.
The sample program uses the instances created in [2] to read the pre-trained model from the specified paths of the
pre-trained model files (.xml and .bin files) to be used.
The relevant source code is as follows:

Read model_path.json.
json_open = open('/hitachi/people_count_sample/model_path.json', 'r')
json_load = json.load(json_open)
Read the paths to the IR files from the JSON file.
xml = json_load['model_path']['xml']
bin = json_load['model_path']['bin']
Close the JSON file.
json_open.close()
net = ie.read_network(model=xml, weights=bin)

[4] Convert the pre-trained model that was read into an object that can run on the selected device (CPU or GPU).
The sample program converts net, the pre-trained model that was read in [3], into an object for which inference
processing can be performed on the specified device.
The relevant source code is as follows:

Convert the model into an object that can run on the selected device (CPU in this
 case).
exec_net = ie.load_network(network=net, device_name ="CPU")

[5] Obtain the input information and output information according to the pre-trained model that was read.
The sample program obtains the types of input and output information needed to run the pre-trained model.
The items set in the input information and output information are as follows:

• Input information: Image width, image height, number of channels, number of images to be processed at one
time, and image precision

• Output information: Image precision

7. Inference execution function

63

For details about the input information, output information, and image precision, see the following webpages:

Webpage about the pre-trained model:

http://docs.openvinotoolkit.org/2020.3/_docs_MO_DG_Deep_Learning_Model_Optimizer
_DevGuide.htm

Webpage about precision:

https://docs.openvinotoolkit.org/2020.3/classInferenceEngine_1_1Precision.html

The relevant source code is as follows:

Set input and output information according to the pre-trained model to be read.
for input_key in net.inputs:
 if len(net.inputs[input_key].layout) == 4:
 n, c, h, w = net.inputs[input_key].shape

[6] Set the detection threshold.
The sample program sets the threshold to be used as the basis for determining the face area. For details, see (5) 
Saving the inference results.
The relevant source code is as follows:

Set the detection threshold.
DETECTION_THREDHOLD = 0.5

(2) Reading the input data
In this step, the sample program obtains input information from the container of the data management function. The
program uses the get_frame function of the Dataman class when obtaining input information from the container
of the data management function.

The relevant source code is as follows:

"ret" contains whether frame acquisition was successful (True or False).
"info" contains frame information.
"frame" contains the input image data.
ret,info, frame = dm.get_frame()

(3) Preprocessing the input data
In this step, the sample program converts the input information based on the inference conditions for the pre-trained
model that was read. Note that the inference conditions are specified in [5] in (1) Initial setup. The input information
(image) is represented by using a three-dimensional array consisting of the height, width, and number of channels. The
sample program converts the input information into the structure required for the pre-trained model and stores the
conversion results in images.

The relevant source code is as follows:

Convert the input data at a size that can be handled by the pre-trained model (heigh
t x width = 300 x 300).
if (ih, iw) != (h, w):
 image = cv2.resize(image, (w, h))
Convert the data type from (h, w, c) to (c, h, w).
image = image.transpose((2, 0, 1))
images = image

(4) Inference
In (3) Preprocessing the input data, the sample program converted the input information into a format that can be
handled by the pre-trained model that was read by the program, and then stored the conversion results in images. In
this step, the sample program stores the converted input information to data as dictionary-type data, performs
inference processing based on the stored input information, and then stores the processing results in res.

For details about the inference processing performed by OpenVINO, see the following webpage:

7. Inference execution function

64

https://docs.openvinotoolkit.org/2020.3/ie_python_api/classie__api_1_1InferRequest.htm
l#aac8de3eea8b2eec962bd5b64a176f618

The relevant source code is as follows:

Store "images" (converted image) to "data".
data = {}
data[input_name] = images

Perform inference.
res = exec_net.infer(inputs=data)

(5) Saving the inference results
In this step, the sample program re-stores the inference results in res.

In res, the following information items are stored for each face area detected in the input information:

• Top-left coordinates (x,y) and bottom-right coordinates (x,y) of the face area

• Degree of certainty that the area is a face (0 to 1)

The sample program retrieves data from the inference results for each detected face area by using a for loop. Then,
the program compares the detection threshold (set in [6] in (1) Initial setup) with the degree of certainty. (To make
processing easier, only inference results with a degree of certainty greater than or equal to the threshold are assumed to
be face areas and stored in arrays boxes and classes.)

The relevant source code is as follows:

res = res[out_blob]
boxes, classes = {}, {}
data = res[0][0]
for number, proposal in enumerate(data):
 if proposal[2] > DETECTION_THREDHOLD:

(6) Processing based on the inference results
During actual operation, the inference results are processed according to the specified settings.

For example, if an error is detected from the inference results, the administrator might be notified of the error.

The sample program notifies the users by turning on an indicator according to the number of detected people.

The following code is the relevant part of the sample program.

The sample program starts process AP (which operates the AP indicator) on the host. In the following code, the
program requests the process to turn on the AP indicator in the color specified via HTTP.

if len(boxes) == 0:
 people_num = 0
 print("people=0")
else:
 people_num=len(boxes[imid])
 print("people="+str(people_num))
Store a value in "ap_color" according to the number of detected people as follows: 0
 = "off", 1 or 2 = "green", 3 or more = "red".
if people_num >= 3:
 ap_color="red"
elif people_num >= 1 :
 ap_color="green"
else:
 ap_color="off"

Send a request to process AP specifying the URL followed by ap_color.
if ap_color != current_ap_color:
 requests.get('http://127.0.0.1:5000/'+ap_color)
 current_ap_color=ap_color

Notifying the data management function that inference finished
The sample program notifies the data management function that inference of the relevant frame has finished.

7. Inference execution function

65

If the input source is a picture file, the program immediately updates the data management table. If the input source is
a video file, the program updates the data management table when processing reaches the last frame. The program
does not need to track the progress of inference processing for the target file.

Relevant frame
dm.update_frame_status(info,Dataman.STATUS_COMPLETED)

(7) Displaying the inference results
In debug mode, the inference results need to be displayed on a monitor so that the user can check the precision of the
pre-trained model that was created.

To display the inference results, use cv2.rectangle to enclose the areas detected based on the inference results
and use cv2.imshow to display those areas on a monitor.

In the sample code, cv2.rectangle uses the following arguments:

• Argument 1: Input image

• Argument 2: Top-left coordinates (x,y) of the detected face area

• Argument 3: Bottom-right coordinates (x,y) of the detected face area

• Argument 4: Color of the line to be drawn

• Argument 5: Thickness of the line to be drawn

For details about cv2.rectangle, see the following webpage:

https://docs.opencv.org/3.4.0/d6/d6e/group__imgproc__draw.html#ga346ac30b5c74e9b513757
6c9ee9e0e8c

The following is sample code that displays inference results.

Perform the following processing in debug mode only.
To enter debug mode, add the -O option (example: $ python -O demo.py).
if not __debug__ :
 # To display inference results together with the input information, use cv2.rectan
gle to rectangularly enclose detected coordinates and save them in tmp_image.
 for imid in classes:
 for box in boxes[imid]:
 cv2.rectangle(tmp_image, (box[0], box[1]), (box[2], box[3]), (232, 35, 244
), 2)

 # Display detection results (arg 1: window name of type string, arg 2: image to sh
ow).
 cv2.imshow(‘demo’, tmp_image)
 cv2.waitKey(1)

7. Inference execution function

66

8 Inference development function
This chapter provides an overview of the inference development function. This
chapter also describes how to start the function and how to use Jupyter Notebook.

67

8.1 Overview of the inference development function
CE50-10A provides the inference development function, which allows users to develop their own inference
processing. Specifically, the inference development function provided is Jupyter Notebook, which is a standard tool
used for data analysis and AI development.

For details about Jupyter Notebook, see the following website:

https://jupyter.org/

With Jupyter Notebook, a user can connect to CE50-10A via a network from a web browser on a PC to input and run
Python programs. The user can then verify how such a program operates and debug it in an interactive manner.

8. Inference development function

68

8.2 How to start the inference development function
The following describes how to start the inference development function from CE50-10A or from a PC via a network
connection:

1. Connect to CE50-10A by using SSH or another protocol from a PC that is connected to CE50-10A via a network,
and then run the following commands to start the container of the inference development function. You can also
run the commands directly on CE50-10A.

Restart the Docker daemon (after stopping all running containers).
$ sudo systemctl restart docker

Create a container specifying ports.
Connect port 8888 of the host and port 8888 of the container.
$ sudo docker container run -it --rm -p 8888:8888 ctrl_edge_ai/openvino_devel:1.0

When you run these preceding commands, the following message appears. The token displayed in the message is
the password for logging in to Jupyter Notebook. A new token is generated each time the container starts.

Copy/paste this URL into your browser when you connect for the first time,
 to login with a token:
 http://0.0.0.0:8888/?token=9f64181ec9bb360b831f2ce6d3893c4e6b4f3e16a004aa99

2. On a PC that is connected to the network to which CE50-10A is connected, start a web browser, and then enter the
following information in the address bar:

Address bar:

http://IP-address-of-the-CE50-10A:8888/?token=xxx

For xxx, specify the token displayed in step 1.

3. After entering the information shown in step 2 in the address bar, press the Enter key.
The Jupyter Notebook webpage appears in the web browser.

Figure 8‒1: Jupyter Notebook page

4. After you have finished your work, close the container of the inference development function that you created on
CE50-10A, and then close the ports that you opened on CE50-10A.

While the container of the inference development function is displayed,
press [Ctrl+C]. When "Shutdown this notebook server (y/[n])?" appears,
enter [y] and then press the [Enter] key.

8. Inference development function

69

8.3 How to use Jupyter Notebook
This section describes basic Jupyter NoteBook operations and how to use OpenVINO with Jupyter Notebook.

8.3.1 Basic operations in Jupyter Notebook
The following describes how to perform basic Jupyter Notebook operation.

(1) Logging in to Jupyter Notebook
When you start Jupyter Notebook, it generates a URL. When you access the URL from a web browser, the Jupyter
Notebook home page appears.

For details about how to start Jupyter Notebook, see 8.2 How to start the inference development function.

(2) Using Jupyter Notebook to create a new Python 3 notebook
The following describes how to use Jupyter Notebook to create a new Python 3 notebook:

1. On the Jupyter Notebook home page, click the New button.

2. In the menu that appears, click Python 3.
A new Python 3 notebook is created.

Figure 8‒2: Creating a new notebook

(3) Running Python 3 (outputting a string to the standard output)
The following describes how to run Python 3 in Jupyter Notebook:

1. In the editor page of the notebook, enter Python source code in an In text box.

2. Click the Run button.
When you click the Run button, the code in the text box runs, and then the execution results are displayed below
the text box. Note that all of the code in the In text boxes is executed.

The following is an example in which the print function is used to output a character string below the text box.

8. Inference development function

70

Figure 8‒3: Example of outputting a character string to the standard output

(4) Uploading and downloading files

To upload a file:
The following describes how to use Jupyter Notebook to upload files:

1. On the Jupyter Notebook home page, click the Upload button.

2. In the Explorer window that appears, specify the files to be uploaded.

3. Confirm that the specified files are displayed on the home page, and then click the Upload button again.

To download a file:
The following describes how to use Jupyter Notebook to download files:

1. On the Jupyter Notebook home page, select the check boxes of the files to be downloaded.

8. Inference development function

71

2. Click the Download button.

8.3.2 Procedure for using OpenVINO on Jupyter Notebook
This section describes how to use OpenVINO to perform inference on Jupyter Notebook, using a case in which an
automobile detection program is run as an example.

(1) Preparation

• Upload test data (car-detection.jpg in this example) and pre-trained model files (.xml and .bin files).

The source of the test data is as follows:

https://github.com/intel-iot-devkit/sample-videos/raw/master/car-detection.mp4

• Create a new Python 3 notebook, and then open the editor page.

(2) Procedure for using OpenVINO

1. Load the necessary libraries.
If the libraries do not exist, install them.

8. Inference development function

72

2. Load picture files to display them on the Jupyter Notebook page. (Images, figures, and tables are drawn in the Out
fields.)

3. Load the pre-trained model files.

4. Change the type and size of the input image to adapt the image to the pre-trained model.

5. Perform inference.

6. Prepare to output the inference results.

7. The inference results are drawn on the page.

8. Inference development function

73

8. Inference development function

74

9 RAS techniques for the AI image
application functionality
This chapter describes how to configure the settings for error detection, container
restart, and the collection of operating information.

75

9.1 Overview of the RAS techniques for the AI image
application functionality

The RAS techniques for the AI image application functionality are as follows:

• Error detection
If errors occur on function containers, log messages are output. These log messages are subject to generation
management provided by CE50-10.

• Container restart
You can specify whether to restart a container that terminates abnormally.

• Collection of operating information
The log messages output by the Docker service and containers can also be collected by using the eclogsave
command, which is provided by CE50-10 to collect maintenance information.
For details about the eclogsave command, see the section that describes the eclogsave command in the
CE50-10 Instruction Manual. That section also describes how to use the eclogsave command to collect log
files output by user-developed applications.

9. RAS techniques for the AI image application functionality

76

9.2 Error detection
The processes of the AI image application functionality output error messages if errors occur during operation. This
section describes how to set the output destination (a log file) of the error messages in the Compose file. This section
also describes the format, maximum size, and generation management of the log file.

9.2.1 Settings in the Compose file
To forward the messages output by processes running on function containers to /var/log/docker.log via the
syslog, specify the following logging: setting items in the Compose file:

logging:
 driver: syslog
 options:
 syslog-facility: daemon
 tag: docker-compose/{{.Name}}/{{.ID}}

The following table describes these setting items.

Table 9‒1: "logging:" setting items in the Compose file

No. Item Description

1 driver: Specifies the logging driver.

Specify syslog so that the messages are output to /var/log/docker.log via the
syslog.

2 options: Specifies logging-related options.

3 syslog-
facility:

Specifies the syslog facility.

Specify daemon so that the messages are output through a syslog filter to /var/log/
docker.log.

4 tag: Specifies the tags to be output at the beginning of each log message.

Specify docker-compose/{{.Name}}/{{.ID}} so that the messages are output
through a syslog filter to /var/log/docker.log.

• {{.Name}}: Container name

• {{.ID}}: First 12 characters of the container ID

9.2.2 Log format
The following shows the format of log messages that are output to /var/log/docker.log:

date/time host-name docker-compose/container-name/first-12-characters-of-the-container
-ID[process-ID]: container-log-message
date/time host-name dockerd[process-ID]: Docker-log-message
date/time host-name containerd[process-ID]: Docker-log-message

9.2.3 Maximum size and generation management of the log file
The following table describes the maximum size, the number of generations that can be managed, and other
information about the log file in the /var/log directory.

9. RAS techniques for the AI image application functionality

77

Table 9‒2: Size and number of generations for the log file

No. Log file name Data to be
logged

No.
of

gene
ratio
ns

Maximum size
(KB)

Collectio
n

interval

Size (KB) per
interval

(approx.)

Storage period
(days) (approx.)

1 docker.log Docker log 3 3,072

(1,024 x 3)

Undefine
d

13# 236#

#
The calculation assumes that 100 messages are output to the log per day and each message consists of a body of
50 bytes and tags of 80 bytes:
- Size of logged data per day: (50 + 80) x 100 = 13 (KB/day)
- Storage period of logged data: 3,072 / 13 = 236 (days)
Note that all messages output to the standard output of a Docker container are recorded in docker.log.
Therefore, if you implement an application that continuously outputs information to the standard output, the log
data storage period will be much shorter than expected. In such a case, you must consider the frequency and
content of the messages to be logged when designing the application.

For details about other log files output to /var/log, see Collecting maintenance information in the CE50-10
Instruction Manual.

9. RAS techniques for the AI image application functionality

78

9.3 Container restart
If a function container ends abnormally, it can restart automatically. To enable automatic container restart, specify
restart:on-failure in the Compose file. For details, see Table 4‒1: Setting items in the Compose file.

By default, restart:on-failure is not specified in the Compose file. In other words, automatic container restart
is disabled.

After the keyword on-failure, you can specify the maximum number of retries. If you want to specify this,
determine the appropriate value by referring to the following table, which describes the advantages and disadvantages
of specifying a larger value or a smaller value as the maximum number of retries.

Table 9‒3: Advantages and disadvantages of specifying a larger value or a smaller value as the maximum
number of retries

No. Maximum number of
retries Advantages Disadvantages

1 Larger The likelihood of successful
failure recovery increases.

The messages logged for repeated retries might cause
the original error message to be deleted.

2 Smaller The likelihood that the
original error message will
be deleted decreases.

• The likelihood of successful failure recovery
decreases.

• The retry counter is not reset each time the
container restarts. Therefore, even in the case of a
transient failure, the likelihood of successful
failure recovery will decrease in a system that has
been running for a long time.

9. RAS techniques for the AI image application functionality

79

9.4 Collection of operating information
CE50-10 provides the eclogsave maintenance information collection command. This command collects log data
recorded and saved by the OS, log files registered in the definition file by the user, and system information required
for failure analysis all at one time. In CE50-10A, the eclogsave command also collects data from /var/log/
docker.log by default.

Furthermore, the eclogsave command can collect data from logs and other files created in containers by the user if
they are visible to the host.

For example, you can make files in containers visible to the host by using a shared directory that is specified for
volumes in the Compose file.

If you want user files to be collected by eclogsave, specify their absolute paths on the host in the user definition
file (/hitachi/etc/save_applog.def).

Example of specifying user files in the user definition file (/hitachi/etc/save_applog.def):

/home/edgeadm/share/applog1
/home/edgeadm/share/applog2

9. RAS techniques for the AI image application functionality

80

Part 5: Operation

10 Updater
This chapter provides an overview of the updater and describes the update procedure.

81

10.1 Overview of the updater
With Docker, software and its prerequisite files are packaged in a container as a Docker image, which can be copied to
and run on another host.

Normally, the following tasks must be performed to run a program on another host:

1. Install prerequisite libraries.

2. Deploy the files required to run the program.

To run a program on multiple hosts, the preceding tasks must be performed on each host, which is time-consuming
work.

With Docker, you can handle the prerequisite libraries and files required for program execution as a single package
called a Docker image. By deploying a Docker image on a host, you can easily run a program as a container from the
Docker image. This greatly reduces the time required for the preceding tasks.

Docker also facilitates updates because you can update a program by simply replacing the image file.

10. Updater

82

10.2 Overview of the update procedure
The following figure shows an environment in which the update function is used.

Figure 10‒1: Example of using the update function

The description in this chapter assumes that inference processing version 1.0 is running on CE50-10A in the
production environment and that inference processing version 2.0 is running on CE50-10A in the development
environment.

10.2.1 Update procedure
The following figure provides an overview of how to update a program from version 1.0 to version 2.0.

10. Updater

83

Figure 10‒2: Overview of updating a program

Although you can perform tasks (1) to (4) while the container of the inference execution function is running, we
recommend that you stop the container before performing these tasks.

(1) Creating a Docker image in the development environment
After you have created a settings file and inference program, you can include them in a Docker image provided by
CE50-10A and then register that Docker image in Docker as a new Docker image.

For details about the procedure, see (2) Creating a Docker image with a file installed.

The description in this section assumes that you are creating a Docker image of the container of the inference
execution function. However, the same procedure applies when you create a Docker image of the container of the data
management function or the container of the data input function.

(2) Exporting the Docker image to a file on the host in the development environment
Run the following command to export the Docker image to a file.

Example of the command to be run:

$ sudo docker save people_count:2.0 > people_count_2_0.tar

(3) Copying the necessary files to the host in the production environment
Copy the necessary files to the host. For example, you can do so by using SCP to transfer the files via a network or by
using storage media such as a USB memory drive.

To copy the files via a network, run the following command on the host in the development environment.

Example of the command to be run:

$ scp ./people_count_2_0.tar edgeadm@IP-address-of-the-host-in-the-production-envir
onment:image-file-transfer-destination-path

10. Updater

84

(4) Importing a Docker image from the file on the host in the production environment
Run the following command to import the Docker image to a file.

Example of the command to be run:

$ cd image-file-path
$ sudo docker load < people_count_2_0.tar

(5) Running the imported Docker image
If the Docker image name has been changed, change the image: value accordingly in the Compose file as follows.

Before the change:

services:
 people_count:
 image: people_count:1.0

After the change:

services:
 people_count:
 image: people_count:2.0

Run the following command to start the service for which the Docker image has been updated. (Internally, the current
container stops and then a new container starts.)

$ cd path-of-the-directory-that-contains-docker-compose.yaml
$ sudo docker-compose up -d service-name

10. Updater

85

11 Troubleshooting
This chapter describes the error messages that are displayed by the AI image
application functionality and the action to take for each error message.

87

11.1 Error messages that might be displayed when the
docker-compose command is run

This section describes the error messages that might be displayed when the docker-compose command is run and
the action to take for each error message.

Table 11‒1: Error messages that might be displayed when the docker-compose command is run

No. Message Description Action

1 ERROR:
 Can't find a suita
ble configuration file in
this directory or any
 parent. Are you in
 the right directory?

 Supported filename
s: docker-compose.yml, doc
ker-compose.yaml

The Compose file could not be found. Specify the Compose file for the -f
option. Alternatively, place the
Compose file named docker-
compose.yaml or docker-
compose.yml in the current directory.

2 Pulling XXXX (YYYY:ZZZZ)..
.
ERROR: Get https://registr
y-1.docker.io/v2/: dial tc
p: lookup registry-1.docke
r.io: Temporary failure in
 name resolution#

The Docker image specified in the
Compose file could not be found.

XXXX: Service name

YYYY: Docker image name

ZZZZ: Tag name

Make sure that the Docker image name
specified in the Compose file is correct.

3 ERROR: for XXXX Cannot sta
rt service XXXX: OCI runti
me create failed: containe
r_linux.go:345#: starting c
ontainer process caused "e
xec: \"YYYY\": stat YYYY:
no such file or directory"
: unknown#

The command could not be run.

XXXX: Service name

YYYY: Command

Make sure that the command name and
path are correct.

4 ERROR: Service 'XXXX' depe
nds on service 'YYYY' whic
h is undefined.

The YYYY service specified for
depends_on of the XXXX service
could not be found.

Revise the container dependency and
specify a correct value for
depends_on.

5 ERROR: No containers to st
art There is no container to be started. Check whether the container to be

started by the docker-compose ps
command exists. If it does not exist, run
docker-compose up [-d] to
generate a container, and then start the
container.

#
The underlined portions might change depending on the network environment or the command that is run.

11. Troubleshooting

88

11.2 Error messages of the data input function
This section describes the error messages that might be displayed when the data input function is used and the action
to take for each error message.

Table 11‒2: Error messages of the data input function

No. Message Description Action

1 Failed to parse path-of-da
ta_input.json

The settings in the
data_input.json file are
incorrectly formatted.

Revise the settings in the
data_input.json file.

2 Unable to set the pipeline
 to the playing state.
(video_input:1): GStreamer
-CRITICAL **: 22:56:50.374
: gst_element_get_bus: ass
ertion 'GST_IS_ELEMENT (el
ement)' failed
Failed to get bus.
or
Error: Could not open reso
urce for reading and writi
ng.
or
Error: Unauthorized

A connection to the camera could not be
established.

Make sure that the camera is correctly
connected. In addition, revise the
settings in the docker-
compose.yaml file.

3 Error received from elemen
t ximagesink0: Could not i
nitialise X output
Debugging information: xim
agesink.c(860): gst_x_imag
e_sink_xcontext_get (): /G
stPipeline:pipeline0/GstXI
mageSink:ximagesink0:
Could not open display

The function failed to display a preview
on a monitor.

Make sure that the X forwarding
settings are correctly specified in the
docker-compose.yaml file.

4 Error: Internal data strea
m error. An error occurred on the V4L driver

when a USB camera was used.
Make sure that the USB camera is
correctly connected and that proper
resolution and FPS values are set.

11. Troubleshooting

89

11.3 Error messages of the data management function
This section describes the error messages that might displayed when the data management function is used and the
action to take for each error message.

Table 11‒3: Error messages of the data management function

No. Message Description Action

1 Failed to parse path-of-da
ta_manager.json

The settings in the
data_manager.json file are
incorrectly formatted.

Revise the settings in the
data_manager.json file.

2 Failed to parse path-of-da
taman.json

The dataman.json file could not be
read. Alternatively, the format of the file
is incorrect.

Revise the settings in the
dataman.json file.

3 The value is over usable v
olume size. The value of unfinished_limit or

finished_limit exceeds the size of
free space on the volume.

Revise the values so that they are less
than the size of free space on the
volume.

4 Failed to connect Data Man
ager API. The function could not access the API. Make sure that the URL specified in the

dataman.json file is correct. In
addition, make sure that the port settings
for the container of the data
management function in the docker-
compose.yaml file are correct.

11. Troubleshooting

90

11.4 Error messages of the inference execution function
This section describes the error messages that might be displayed when the inference execution function is used and
the action to take for each error message.

Table 11‒4: Error messages of the inference execution function

No. Message Description Action

1 Failed to connect Data Man
ager API. After the container of the inference

execution function started, no visual file
could be received from the container of
the data management function.

Check the status of the container of the
data management function. If the
container has not successfully started,
start it by referring to 4.3.1 How to start
Docker containers.

2 Cannot connect to the Dock
er daemon at unix:///var/r
un/docker.sock. Is the doc
ker daemon running?

The Docker daemon is not running. Start the Docker daemon by referring to
3.1.2 Starting the Docker service.

3 RuntimeError: Failed to cr
eate plugin /opt/intel/ope
nvino/deployment_tools/inf
erence_engine/lib/intel64/
libclDNNPlugin.so for devi
ce GPU

The GPU could not start in the
container.

Specify the settings that allocate a GPU
device to the container in the docker-
compose.yaml file by referring to
4.1 Using the Compose file to
customize the functionality.

11. Troubleshooting

91

11.5 Error messages of the inference development
function

This section describes the error messages that might be displayed when the inference development function is used
and the action to take for each error message.

Table 11‒5: Error messages of the inference development function

No. Message Description Action

1 docker: Error response fro
m daemon: driver failed pr
ogramming external connect
ivity on endpoint ***: (i
ptables failed: iptables -
-wait -t filter -A DOCKER
! -i docker0 -o docker0 -p
 tcp -d *** --dport 8888 -
j ACCEPT: iptables: No cha
in/target/match by that na
me.(exit status 1)).

The ports of CE50-10A and the
container could not be connected.

Restart the Docker daemon.

11. Troubleshooting

92

Appendix

93

A. Interfaces of CE50-10A
This appendix describes the interfaces supported by CE50-10A.

A.1 Supported specifications
The following table shows the specifications supported by the AI image application functionality.

Table A‒1: Supported specifications

No. Item Specifications

1 Camera • USB camera connected via USB 2.0 or 3.0 (compatible with USB Video Class
1.0 or 1.1)

• IP camera (RTSP)

Codec:

- USB camera: Uncompressed and Motion-JPEG

- IP camera: Motion-JPEG and H.264

2 Input file format JPEG, PNG, MPEG-2, and MPEG-4 (H.264)

3 Maximum resolution 3,840 x 2,160

4 Inference processing
development language

Python

5 Pre-trained model OpenVINO IR (extension: .xml or .bin)

Precision: FP32, FP16, or INT8

6 Device that performs inference CPU or GPU

7 Development environment OpenVINO, Jupyter Notebook, or Python

8 PC used to perform operations
via a network

• OS: Windows 10 version 1803 or later

• Web browser: Google Chrome

A. Interfaces of CE50-10A

94

	CE50-10A User's Guide
	Preface
	Contents
	Part 1: Description
	1. Functional overview
	1.1 What can be done with CE50-10A
	1.2 AI image application functionality
	1.2.1 OpenVINO

	Part 2: Experience
	2. Quick guide for using the AI image application functionality
	2.1 Overview of experiencing the AI image application functionality
	2.1.1 Creating a Docker-only partition
	2.1.2 Confirming the Docker-only partition
	2.1.3 Creating a file system in the Docker-only partition
	2.1.4 Mounting the Docker-only partition
	2.1.5 Starting the Docker service
	2.1.6 Installing a Docker image

	2.2 Description of sample programs
	2.2.1 Running the sample program that imports a sample video
	2.2.2 Running the sample program that imports a live video from a USB camera

	Part 3: Setup
	3. Setting up the AI image application functionality
	3.1 Procedure for setting up the AI image application functionality
	3.1.1 Creating and mounting a Docker-only partition
	3.1.2 Starting the Docker service
	3.1.3 Installing the Docker image

	3.2 Displaying the partition information

	Part 4: Design and Functionality
	4. Design of the AI image application functionality
	4.1 Using the Compose file to customize the functionality
	4.2 Procedure for setting up the automatic startup of Docker containers during OS startup
	4.2.1 Procedure for setting up the automatic startup of the Docker service
	4.2.2 Procedure for enabling the automatic startup of Docker containers

	4.3 How to start and stop the AI image application functionality
	4.3.1 How to start Docker containers
	4.3.2 How to stop Docker containers
	4.3.3 How to check the status of the Docker containers

	4.4 Notes on designing a system
	4.4.1 Provided container images
	4.4.2 Automatic restart of Docker containers
	4.4.3 Tuning the number of obtained frames
	4.4.4 Firewall settings
	4.4.5 Security risks and countermeasures

	5. Data input function
	5.1 Overview of the data input function
	5.2 How to connect a camera
	5.2.1 Connecting a USB camera
	5.2.2 Connecting an IP camera

	5.3 How to specify the settings of the data input function
	5.3.1 Settings of the data input function
	5.3.2 Container settings

	5.4 Procedure for verifying operation

	6. Data management function
	6.1 Overview of the data management function
	6.2 API specifications of the data management function
	6.2.1 Registering a file in the data management function (v1FilesPost)
	6.2.2 Updating file status (v1FilesFileIdPut)
	6.2.3 Receiving files (v1FilesGet)

	6.3 Specifications of the library available for the data management function
	6.3.1 Library usage
	6.3.2 Settings for using the library
	6.3.3 How to import the library
	6.3.4 Dataman class methods
	6.3.5 Constants for file statuses

	6.4 How to specify the settings of the data management function
	6.4.1 Settings file for the data management function
	6.4.2 Compose file settings

	7. Inference execution function
	7.1 Overview of the inference execution function
	7.1.1 How to obtain the pre-trained models provided for use with OpenVINO
	7.1.2 Converting a pre-trained model into an intermediate representation

	7.2 Overview of implementing inference processing
	7.2.1 How to implement inference processing

	7.3 Description of the sample program
	7.3.1 Processing performed by the sample program

	8. Inference development function
	8.1 Overview of the inference development function
	8.2 How to start the inference development function
	8.3 How to use Jupyter Notebook
	8.3.1 Basic operations in Jupyter Notebook
	8.3.2 Procedure for using OpenVINO on Jupyter Notebook

	9. RAS techniques for the AI image application functionality
	9.1 Overview of the RAS techniques for the AI image application functionality
	9.2 Error detection
	9.2.1 Settings in the Compose file
	9.2.2 Log format
	9.2.3 Maximum size and generation management of the log file

	9.3 Container restart
	9.4 Collection of operating information

	Part 5: Operation
	10. Updater
	10.1 Overview of the updater
	10.2 Overview of the update procedure
	10.2.1 Update procedure

	11. Troubleshooting
	11.1 Error messages that might be displayed when the docker-compose command is run
	11.2 Error messages of the data input function
	11.3 Error messages of the data management function
	11.4 Error messages of the inference execution function
	11.5 Error messages of the inference development function

	Appendix
	A. Interfaces of CE50-10A
	A.1 Supported specifications

