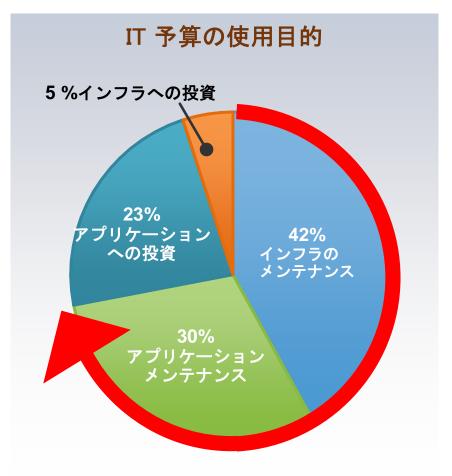


ついに登場 VMware vSphere 4

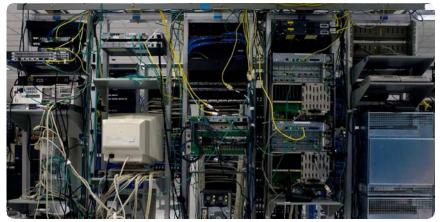
~仮想化技術を用いたシステムの簡素化とコスト削減策 ~

2009年6月30日 ヴイエムウェア株式会社 テクノロジーアライアンス部長 森田 徹治


本日のアジェンダ

- >IT部門が抱える課題
 - ■仮想化によるTCO削減
- >ITサービスのマネジメント
- > VMware vSphere 4 の登場

IT部門が抱える課題 -- 仮想化による TCOの削減


企業IT部門が抱える課題

非常に複雑なシステム

IT 予算の70% 以上が現状維持のみに費やされている

新たな技術開発や競争力の強化のための予算は30%未満しかない

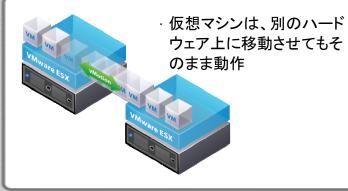
VMwareが提供する仮想化の価値

VMwareが提供する仮想化の特徴

分 割

- ·同一基盤上で複数OSを 同時に稼動可能
- ・仮想マシン間でハード ウェアリソースを共有

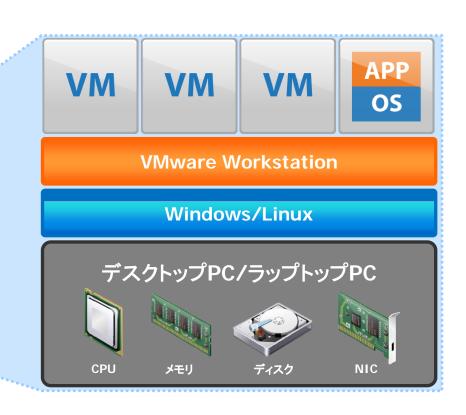
隔離


• 同一基盤上で動作している 仮想マシン同士は安全に隔 離され、相互に影響しない

カプセル化

- 起動ディスクを含む、 仮想マシンの全て の情報はファイルと して格納
 - ファイルの特性を活かし、コピーで別の ハードに移動可能

ハードウェア非依存


仮想化の歩み - ホスト型の仮想化

仮想マシンエミュレータ

VMware Workstation ワークステーションの 仮想化

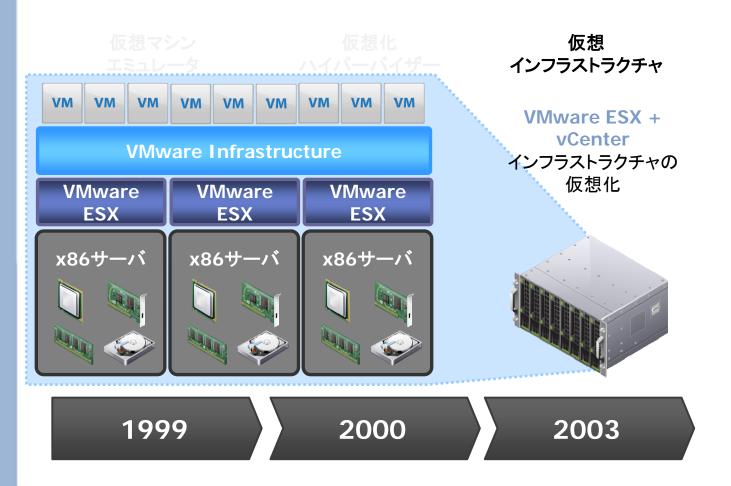
1999

仮想化の歩み - サーバ統合

仮想マシンエミュレータ

VMware Workstation ワークステーションの 仮想化

仮想化 ハイパーバイザー


VMware ESX サーバの仮想化

1999

2000

仮想化の歩み - 仮想インフラストラクチャ

サーバ統合によるコスト削減

	VMware導入前	VMware導入後
サーバ	583台	38台
ストレージ	DAS	SAN 及び NAS
ネットワーク	1,166本のGEポート/ケーブル	152本のGEポート/ケーブル
ファシリティ	10ラック スペース: 6.5m ² 電源コスト、空調コスト	2ラック スペース:1.2m ² 電源コスト、空調コスト
		SAN
	日本	での統合率は 6~12 対 1

サーバ統合によるコスト削減:サーバ・ハードウェア

サーバ台数削減による効果

VMware 導入前

	lisation

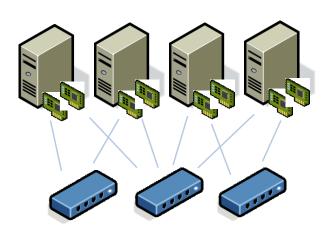
Туре	Quantity	Price
1 CPU	0	\$0
2 CPU	583	\$15,000
4 CPU	0	\$0
8 CPU	0	\$0

VMware 導入後

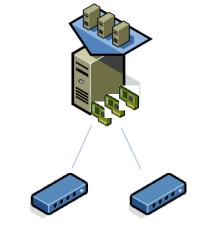
AFTER - Virtualisation				
Туре	Quantity	Price		
1 CPU	0	\$0		
2 CPU	38	\$10,000		
4 CPU	0	\$0		
8 CPU	0	\$0		

最大で545台のサーバ 台数を削減

Server Hardware Savings				
	Year 1	Year 2	Year 3	Total
	\$1,816,666	\$1,816,666	\$1,816,666	\$5,450,000


5億5千万円

サーバ統合によるコスト削減:ネットワーク


VMware 導入前

- 583 servers
- 2 NICs per server
- 1166 Network Ports

VMware 導入後

- 38 servers
- 4 NICs per server
- 152 Network Ports

1014のネットワーク・ポートが 削減可能

Network Savings				
Year 0	Year 1	Year 2	Year 3	Total
	\$169,000	\$169,000	\$169,000	\$507,000

5千万円

サーバ統合によるコスト削減:電力と空調

- 583台の物理サーバを38台に統合
- サーバ1台あたり1年間で、約\$2,000の電力・空調コスト
- 仮想化導入前:\$1.17M、仮想か導入後:76k (38 x \$2,000)

VMware 導入前

BEFORE - Virtualisation Quantity **Power Rating Type** 1 CPU 475W (0.475kW) 0 2 CPU 583 550W (0.550kW) 4 CPU 0 950W (0.950kW) 8 CPU 0 1600W (1.6kW)

VMware 導入後

AFTER - Virtualisation		
Туре	Quantity	Power Rating
1 CPU	0	550W (0.550kW)
2 CPU	38	675W (0.675kW)
4 CPU	0	1150W (1.15kW)
8 CPU	0	1900W (1.9kW)

Power Savings				
Year 0	Year 1	Year 2	Year 3	Total
	\$365,000	\$365,000	\$365,000	\$1,094,000

1億円

サーバ統合によるコスト削減:データセンタのスペース

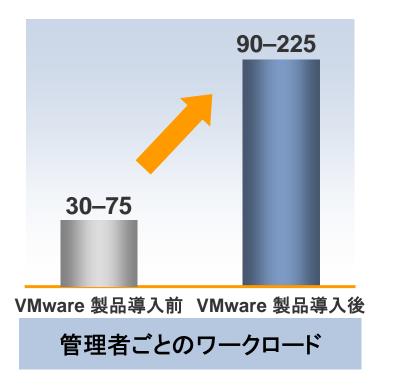
データセンターのスペースを大きく削減

VMware 導入前

BEFORE - Virtualisation

Required Space	6.5 sqr Metres
Number of Racks	10

VMware 導入後


AFTER – Virtualisation

Required Space	1.2 sqr Metres
Number of Racks	2

運用コストの削減

- 同じ数の人員でより多くの作業を行う運用コストの削減
- > 生産性向上の要因
 - > 迅速なプロビジョニング
 - > 動的なパッチ適用
 - > ダウンタイムなしのメンテナンス
 - > 高可用性を備えた設計
 - ディザスタリカバリの自動化

出典: IDC 社および VMware TAM プログラム

ビジネスの俊敏性を実現

VMware導入前 (1か月)

サーバ/スペック の選定

購入

ラッキング/ ケーブル結線 OSセットアップ パッチ適用

アプリケーション セットアップ

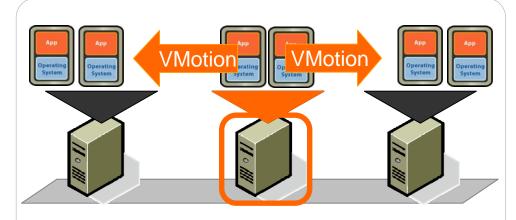
システム 起動

所要時間・

VMware導入後 (15分)

サーバ/スペック の決定 ESXの 決定

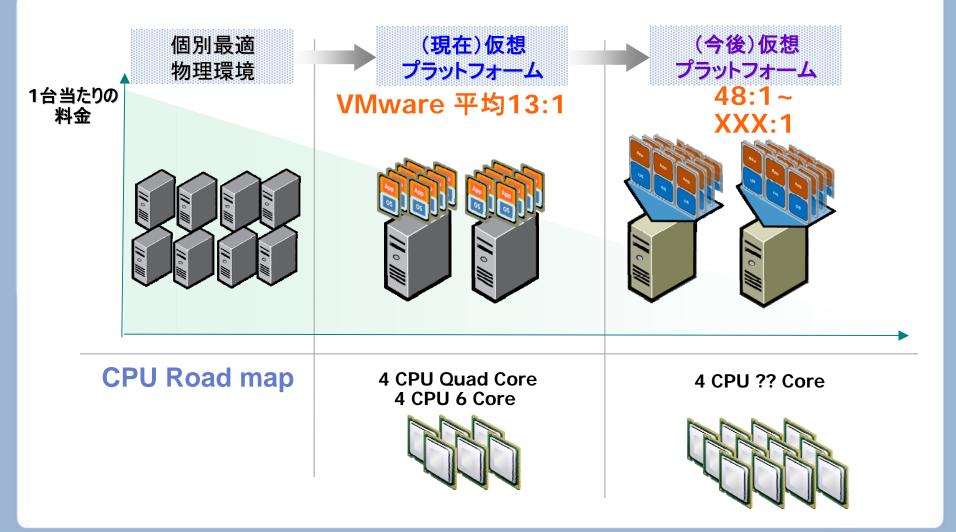
VMを 展開/起動


物理作業なし

より生産的に使えるようになる時間

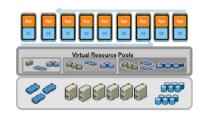
サーバ導入時の作業コストを大幅に削減 俊敏性の向上 (Time to Market) サーバのプロビジョニングも含めた自動化

ダウンタイムなしのメインテナンス


- 1. 物理ホストのメンテナンス モードを 有効にする
- 2. 実行中の仮想マシンをDRSが別の ホストに移行
- アイドル状態のホストをシャット ダウンして、メンテナンスを実行
- ホストを再起動すると、DRSが ワークロードを自動的に再調整

ITサービスのマネジメント

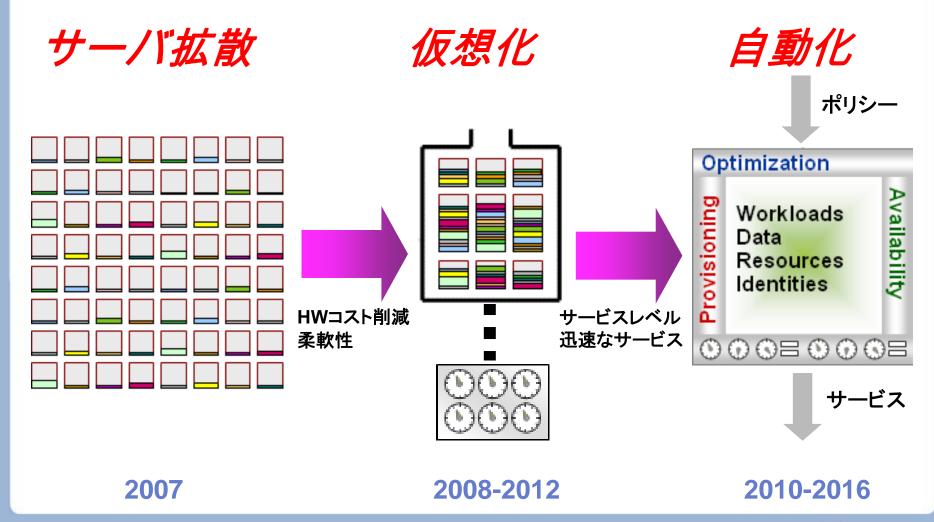
Core数の増加とシステムパフォーマンス


仮想環境のマネジメントの進化

Phase 1 ハイパーバイザーと仮想マシンを 構成要素として管理

Phase 2 大きなリソースプール全体を 動的に管理 Phase 3
インターナル・クラウドのマネジメント

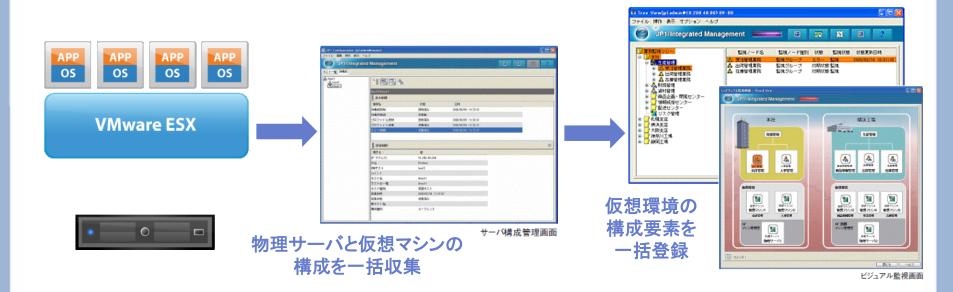
物理から仮想への移行に伴い、 仮想マシンの管理の必要性


性能アセスメント、仮想マシンへの 変換、仮想マシンのプロビジョニン グ、パッチ管理 ミッションクリティカルなワークロード を含む、巨大で複雑な仮想化データ センターの管理

スケーラビリティー、構成の自動化 とコンプライアンス、オペレーション 管理 ユーティリティー・コンピューティング - ポリシー優先の自動化

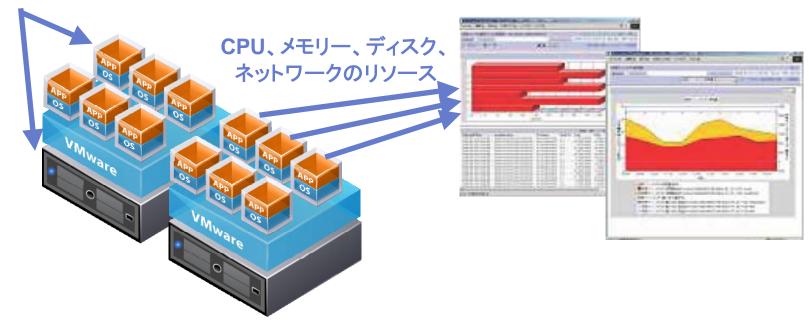
セルフサービス、SALに基づいた 管理機構

データセンタの仮想化: サーバ拡散からリアルタイムのインフラヘ



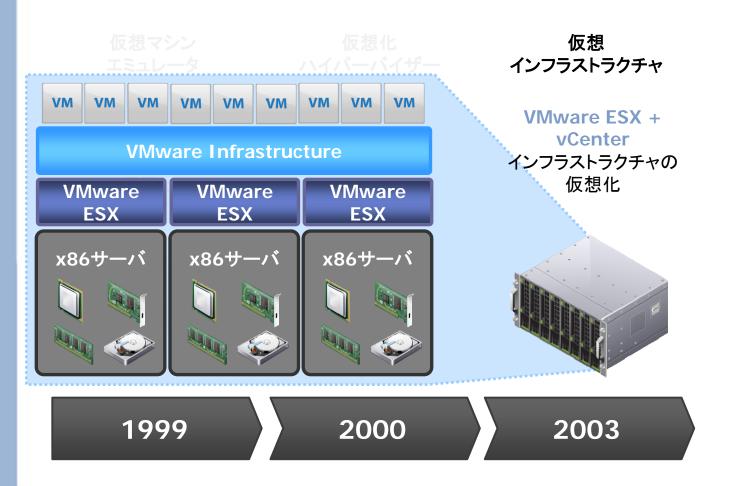
JP1の仮想化環境の監視

VMware仮想化環境から、物理サーバと仮想マシンの構成情報を一括収集 仮想化環境におけるサーバの構成管理や、運用の負担を軽減


- > 物理サーバと仮想マシンの複雑な構成を一括収集
- ➤ 仮想環境を監視する監視ツリー画面を自動構成

JP1のリソース計画の支援機能

物理サーバと仮想マシンの両方を監視し、最適な仮想環境を実現するためのリソース情報を収集


物理サーバと仮想マシンの両方の稼動監視

VMware vSphere 4 の登場

仮想化の歩み - 仮想インフラストラクチャ

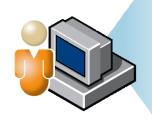
VMwareの歩み(クラウドのプラットフォームとして)

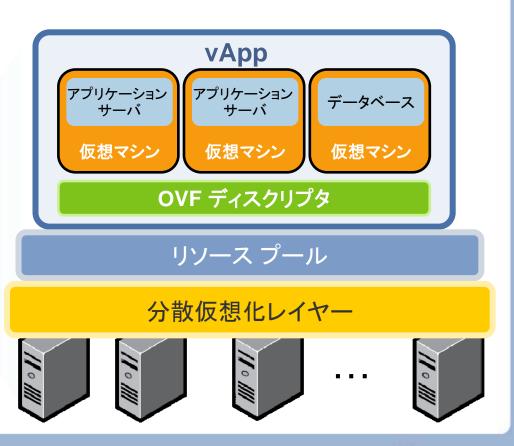
VMwareのフォーカスは仮想化からクラウドへ

VMware Workstation ワークステーションの仮想化 サーバの仮想化 マラクチャの

クラウドOS

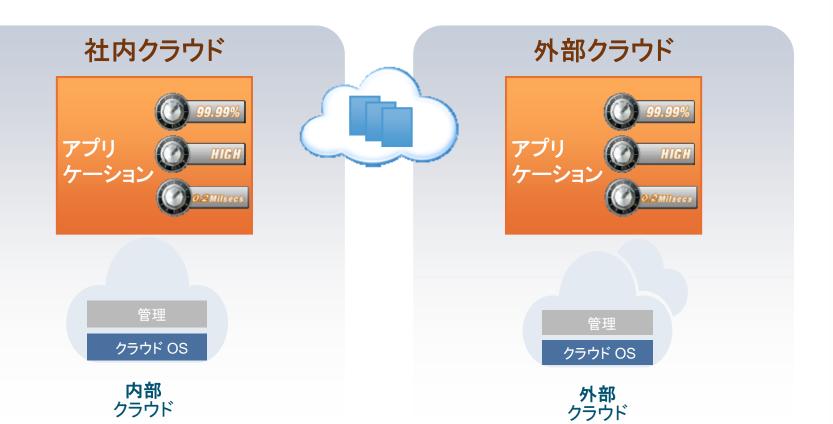
vSphere™ クラウド・インフラ ストラクチャの基盤

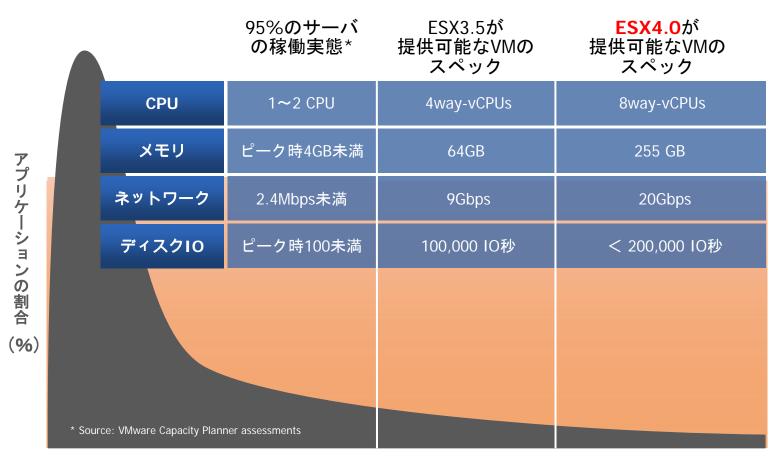

VMware


1999 2000 2003 2009

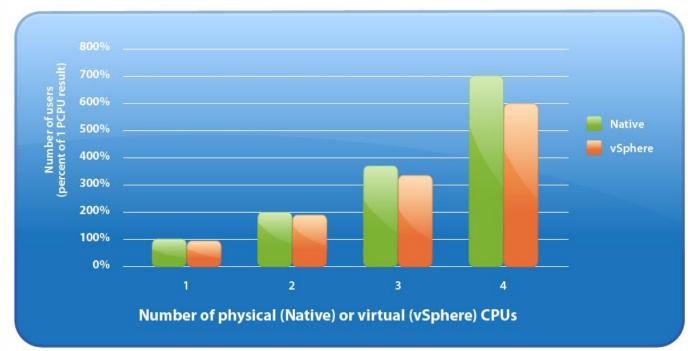
クラウドに向けたアプリケーションの定義

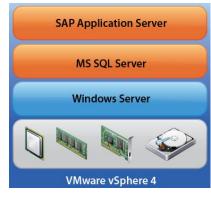
vApps は、単一のインベントリ アイテムとして管理可能なマルチ ティア アプリケーション サービス


- > ワンステップでの管理が可能
- 複雑なセットアップと構成を 排除


VMwareの目指すクラウド・コンピューティング

これまでにない、新規市場を基盤とした規模の経済性(生産拡大に伴い、コストが削減し効率性が向上)、サービス、および変革を実現


アプリケーション要件を超える処理能力を提供



アプリケーションのパフォーマンス要件

vSphere: SAP仮想化のパフォーマンス

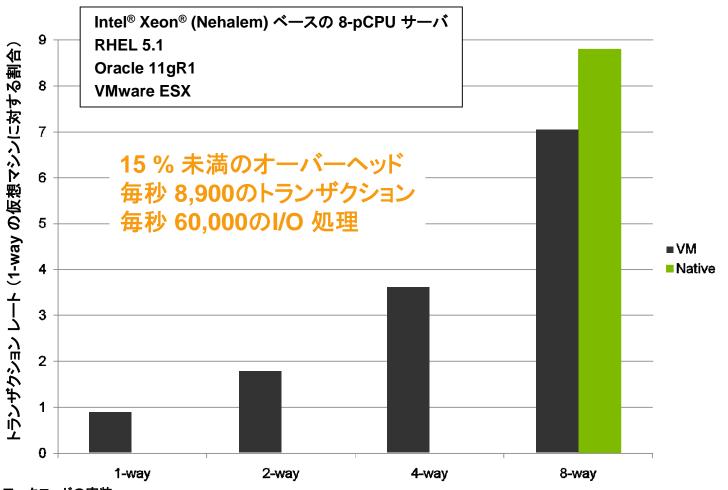
8 vCPUの構成でも物理の85%の性能

CPU: 2 Intel Xeon X5570 at 2.93GHz (8 cores)

Memory: 72GB

Operating System: x64 SUSE Linux 10.2

Database: MAXDB 7.7.04


SAP: ECC 6.0 / NetWeaver 7.0 SR2

Storage: iSCSI filer with 24 1TB disks in a RAID 5

ホワイトペーパー: Virtualized SAP Performance with VMware vSphere 4

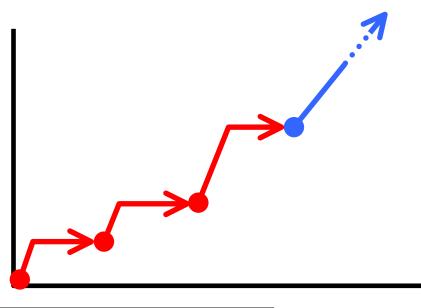
vSphere: 仮想マシン性能のスケーラビリティ

適切に使用される TPC-C ワークロードの実装 (結果は TPC-C に準拠しない)

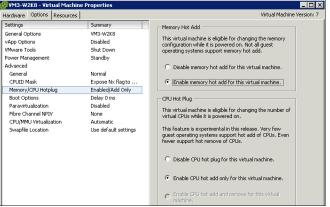
vSphere: 仮想マシンの性能

Sun Fire 15k (2002 年頃)

ホットアド機能でオンデマンド・キャパシティの実現



最大で8CPU


最大で255GB

最大で2TB * 60LUN

最大で10ポート

CPU,メモリ,ネットワーク,ディスクなどのH/Wリソースをオンラインで追加/拡張可能

