HITACHI Inspire the Next

日立のビッグデータ利活用へのアプローチ

2012/11/9

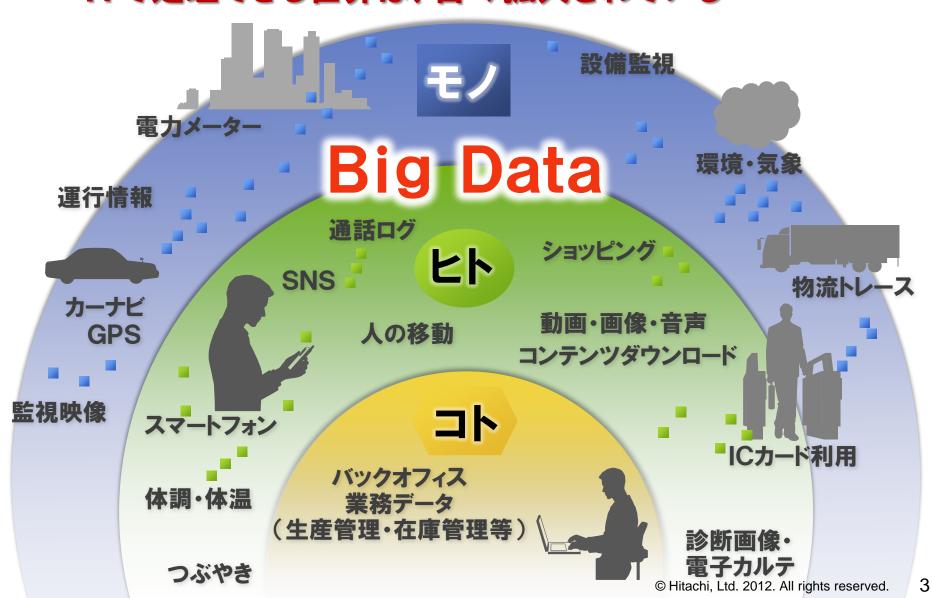
株式会社日立製作所 情報・通信システム社 スマート情報システム統括本部

安田 誠

Human Dreams. Make IT Real.

Contents

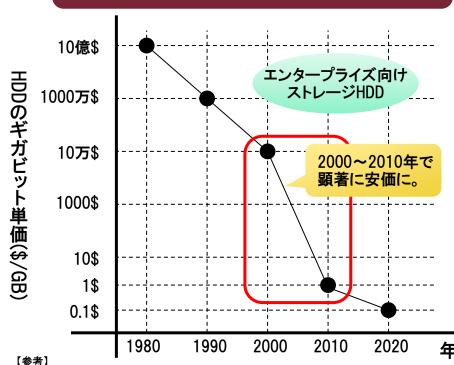
- ・現実としての Big Data
- •Big Data を IT で処理するということとは?
- どう対応するのか?



現実としての Big Data

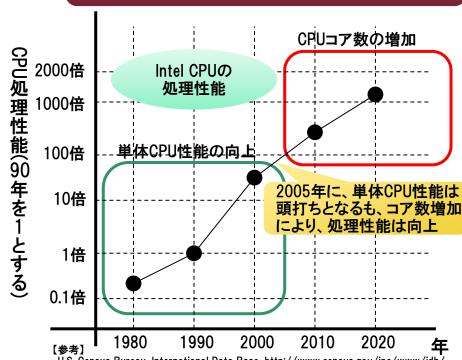
Big Data = 「コト」+「ヒト」+「モノ」のデータ

ITで処理できる世界は、日々拡大されている


ビッグデータを支える大幅な性能と経済性の向上

- <u> → HDD単価低下とマルチコアCPUによる処理性能増</u>
- 複雑な解析や並列処理などが一般化し多様な知見・発見に
- 処理性能と経済性の進化は当面継続

◆データ蓄積価格の低減


2020年には、HDDにおける データ蓄積価格は0.1\$/GBと予測

Jim Gray, The Five-Minute Rule Ten Years Later and Other Computer Storage Rules of Thumb, http://arxiv.org/PS cache/cs/pdf/9809/9809005v1.pdf

◆データ処理能力の向上

1990年と比較し、2020年には CPU処理性能は1200倍になると予測

U.S. Census Bureau, International Data Base, http://www.census.gov/ipc/www/idb/

⁻it pro, 変わるプロセッサ(1)動作周波数の向上が限界に、 http://itpro.nikkeibp.co.jp/article/COLUMN/20081217/321605/?ST=platform&P=2

様々な社会インフラのデータも利活用の対象に

より多くの環境・変数データが利用できる 統計ではなく、リアルタイムで限りなく実態に近い数字が把握できる 掛け合わせや時系列などの複雑な分析処理ができる

都市活動・環境情報 ダイナミックデータ

ヒト・モノ・ の変化・

·人流 ·交通流 ·物流 ·水流

気流、など

環境 の変化 •CO2 ・炎・煙・洪水 ・気圧などの自然現象、 人工現象、など

従来:GIS、各種BIM

従来:個別把握

都市空間情報スタティックデータ

管轄・業態・公共・民間

・地上/地下

地理・状態 ·屋内/屋外の各種 構造物と設備

従来:個別把握

社会インフラ情報 スタティック&ダイナミックデータ

インフラ・電力網・ガス網

横告・設備・一下小型桁

インフラ・電流・ガス流 **流動**・上下水流、など

Big Data を IT で処理するということとは?

今まで見えなかったことも「測れる」ようになった

Big Data

膨大データを

GPS

「蓄積」と「計算処理」が出来るようになった

人の移動

これまで出来なかった高度な「解析」が可能になった

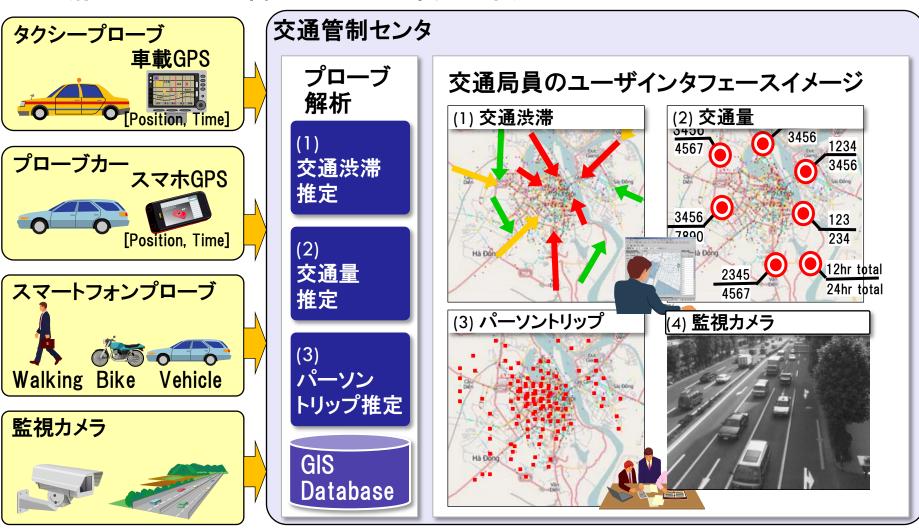
体調·体温

業務データ

(生産管理・在庫管理等)

つぶやき

診断画像・電子カルテ


動画・画像・音声

コンテンツダウンロード

プローブデータによる交通情報

- ◆ プローブカー・プローブパーソンの情報を活用して都市内の交通状態を把握
- ◆ 政府による交通制御や交通計画策定に活用

「高度な解析」の例:タクシープールの効果モデル

現状

- -14,000台のタクシー
- •慢性的タクシー不足
- 降雨時やイベント会場での長蛇のタクシー待ち

プローブデータ:

- 時間 乗•降
- 場所 乗•降
- 乗客数

仮説・想定

- 相乗りタクシー
- 乗る場所と降りる場所をスマホで指定
- ルート上の他の乗客を ピックアップ

モデル・シナリオ passengers handled 100% 80% 4000台で十分 60% 不足解消可能 40% 20% Conventional **TaxiPool** of 0% 5000 10000 15000 20000 # of Taxies タクシー代が 下がる 8.35 (S\$/trip) タクシー業者 利益率向上 (S\$M/qtr.) 28.5 19.0 ドライバー 売上げ増加 (S\$K/mon) 6.7 3.3 加えて: 渋滞緩和&CO。削減

「測れる」事例:ヒューマンビッグデータに対する取り組み

世界初の組織内コミュニケーション定量分析ツール「ビジネス顕微鏡」

名札型センサノード 組織内での活動

ヤンサ

測定データ

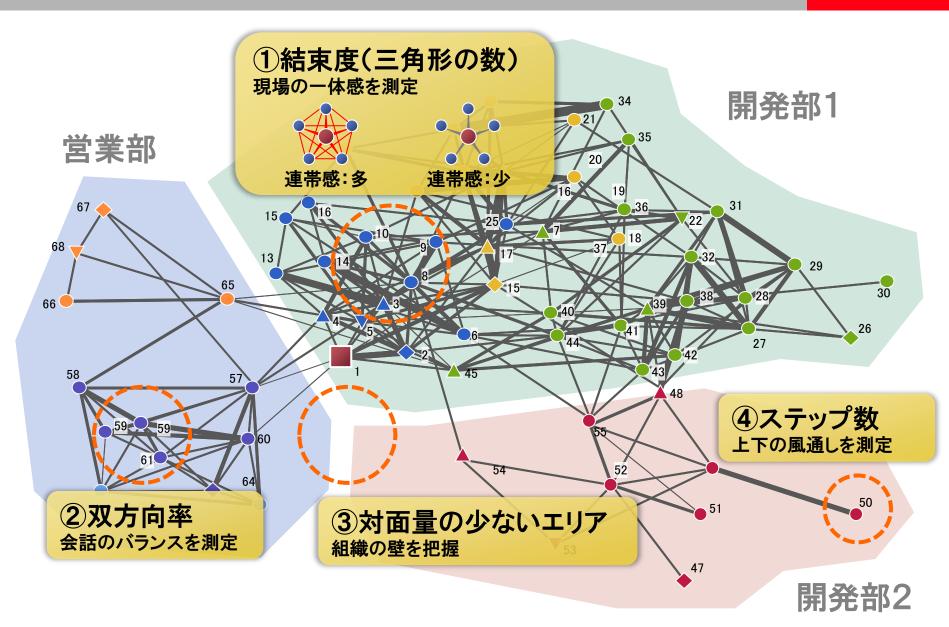
組織内コミュニケーションの量を測定 (ID情報の送受信により対面状態を検知)

加速度センサ

赤外線センサ

動きとコミュニケーションの質を測定 (三軸方向の変化により、動きの大きさを検知)

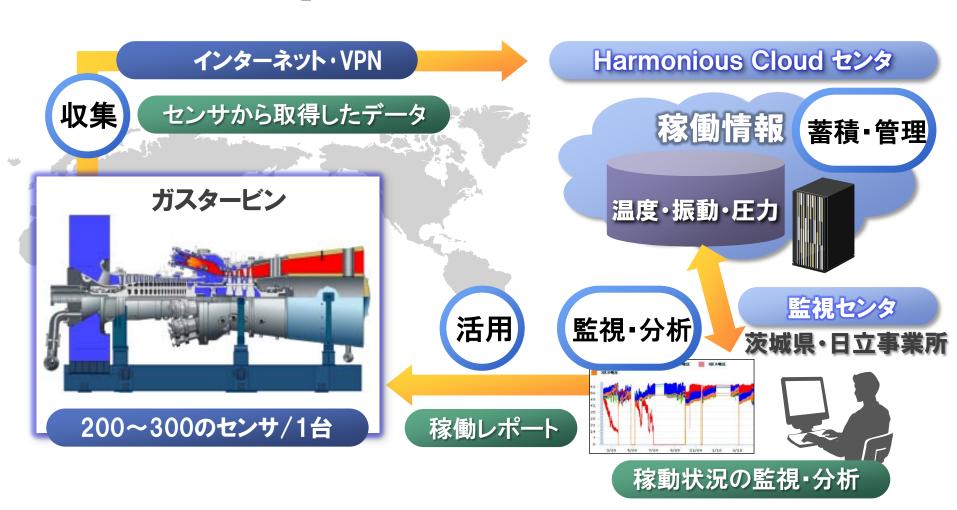
対面検知:右左120°距離2~3mで検知可能。


開発部1

コミュニケーションの見える化

独自のセンサを用いた人間行動分析技術により、大量の蓄積データ (10兆個/100万日ヒューマンビックデータ)と人間行動の分析において、 世界トップの実績と知見を所有

ビジネス顕微鏡で見える組織ネットワーク



「高度な解析」事例:ガスタービン保全ビジネス

データ監視・分析による予防保全で、お客様の稼働率向上 「保全ビジネス」を、効率化、高付加価値化

「第3のデータ」の登場とジレンマ

第3のデータ

用途が定まらず、大規模なITシステム化の決断はできない一方で、 捨ててしまうと将来のイノベーションが失われてしまうようなデータ 例) PageRank以前、ネットのリンク構造のデータは検索エンジンにとって第3のデータだった

従来

第1のデータ **「価値を生む」**

第2のデータ **「価値を生まない」** 活用

集めない or 捨てる これから

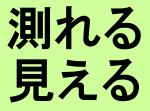
第1のデータ **「価値を生む」**

第3のデータ

現時点で用途なしだが、後に なって価値を生む可能性

第2のデータ **「価値を生まない」** 活用

・ 将来の → 競争力の 源泉


▶捨てる

「第3のデータ」のジレンマ

価値が確信できない

1

貯めない・価値探索しない

役立つ使える

市場や顧客のことが測れて分かることと、 それをどの様にアクションにつなげるかは別のビジネス課題

- "Nice to know"にはコストをかけられない
- GoogleやAmazonの技術や部分模倣をしても課題の解決に到達しない

ビジネスへのインパクトや価値が可視化・数値化できることが重要

どう対応するのか?

イノベイティブ・アナリティクスの実践

日立は豊富な実績と、 業種・業界毎の独自 テンプレートを保有

ビジネス ダイナミクス*1

数理分析

ビッグ データ

データ・アナリティクス・

マイスター

ビジネス構造 の抽出____

ビジネス ナレッジ

イノベイティブ・

アナリティクス

Exアプローチ*2

ITプラットフォーム

価値創出

新たな

*2 お客さまの経験価値を

最適化する観点で、

現在の業務から将来像を創出

協創によって、改善のための

具体的なプロセス構築を可能にする

マイスターの活動とお客さま状況の変遷

ビジョン構築

活用シナリオ策定

実用化検証

システム導入

仮説立案

事業評価モデル化

分析手法検証

システム検証

シナリオ検証

System Integration

うちではどんな 使い方ができるかな?

この課題には、 分析が有効では!?

手法、ROI*1、業務・・・ これなら活用できる!

データ活用により、 ビジネス価値が生まれた!

ビッグデータか・・・ どうすればいいんだ?

ほかにも データの使い道が あるのでは?

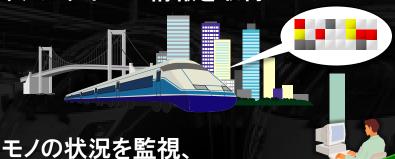
*1 ROI:Return On Investment

鉄道設備の保守サービス転換

現状の課題認識

時間に基づいた保守サービス

● 時間経過による保守


● 発生した故障につど対応

リードタイムや部品在庫を 最適化した保守サービスを 提供できないか?

解決のビジョン

車両上のセンサから リアルタイムに情報を取得

部品管理などのシステムと連携

コストを抑え、最適なサービス提供ができる 予防保守のビジネスへ転換

分析要件の明確化

ビジョン構築

活用シナリオ策定

システム導入

仮説立案

事業評価モデル化

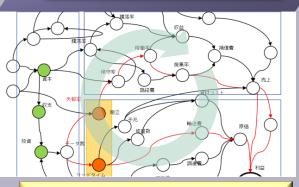
分析手法検証

実用化検証

システム検証

シナリオ検証

System Integration


異常予兆検知による効果を事前に定量見積もり、分析の要件を明確化

解決のビジョン構築 Exアプローチ 経営シミュレーション ビジネス・ダイナミクス

分析要件の抽出

例) 保守部材の適正在庫と保守担当人員配置が収益に重要

在庫、保守人員、 故障の関係をモデル化 (例)

営業利益X%↑:

故障のY日前までに Z%の精度で検知要

ビジネス価値の見える化

ビジョン構築

活用シナリオ策定

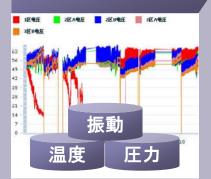
システム導入

仮説立案

事業評価モデル化

分析手法検証

実用化検証


システム検証

シナリオ検証

System Integration

要件を実現する手法・システム要件を明確化し、生み出す価値を見える化

予兆検知手法の 確立 システム規模 見積り 業務に 試験導入 ビジネス価値の 見える化

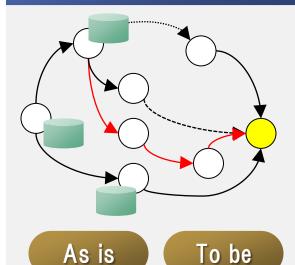
測定・分析の結果が 目標のレベルに達す るまでの手法の試行

業務に組み込んだときに 想定した稼動・効果が出 るかの試行 (例)

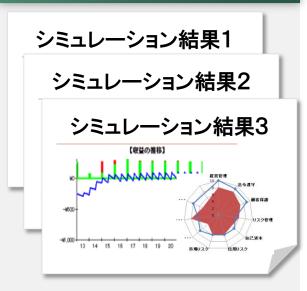
要求を満たすには:

システム: A円 ROI*1:B%見込み

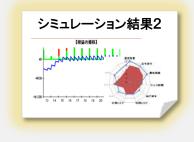
ロ%兄込の


*1 ROI: Return On Investment

ビジネスダイナミクス: ビジネスでの価値をモデル化・可視化する


システムダイナミクス技法を活用し、ビジネスの因果関係をモデル化 事業シナリオの効果をシミュレーションし、定量的な評価結果に基づいて、 最適な事業シナリオを抽出する

モデリング


ビジネスの 因果関係をモデル化

シミュレーション

モデルを基に 効果をシミュレーション

抽出

定量的評価で最適な 事業シナリオ選定

イノベイティブ・アナリティクスの活動内容

SEの活動範囲

ビジョン構築

活用シナリオ策定

実用化検証

システム導入

System Integration

仮説立案

事業モデル化

分析手法検証

システム検証

シナリオ検証

out
Output

ビジネス価値

Output

データ活用の <u>ビジョン</u> Output

生まれる価値の明確化

Output

価値創出の 実現性の目途

Milestone

()YES▶

ビジョン実現に向けた プロセス・KPIの設定 ビジョンに対する 成果の確認 。

ビジョンの実現

ビッグデータ分析のタイプと利活用分野

ビッグデータ分析のタイプ

Re-Active

- •集計
- •分析
- •探索
- -履歴追跡/検知

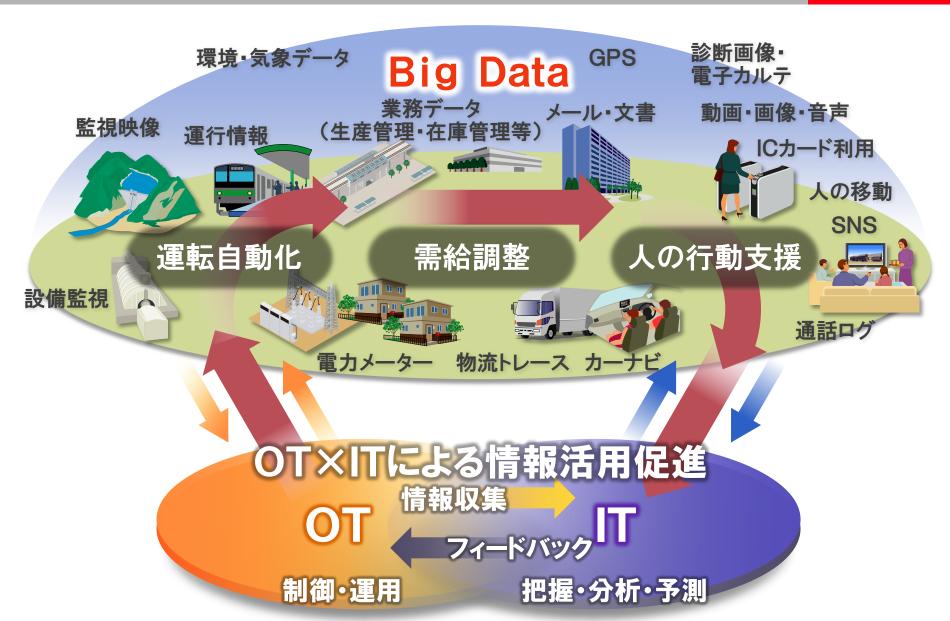
Pro-Active

- •予兆管理/保守
- ・シュミレーションモデル
- •仮説提案

利活用のシステム

分野 用涂 攻めの営業 OneToOne ・クロスセル マーケティング 守りの営業 - 解約阻止 •取引再活性化 セグメントの細分化 •金額、利率、与信枠 •取引方針、優遇 リスク管理 管理監視 ・リスク注意喚起 ・コンプラチェック コンプライアンス管理

新規サービス


Business Intelligence

日立が取り組むビッグデータ

ビッグデータによる価値創出

ビジネスナレッジ

現場力

データ・アナリティクス・マイスター

集積された知見

イノベイティブ・アナリティクス

サービスパートナー

テクノロジーパートナー

♪ビッグデータ利活用プラットフォーム

Hitachi Advanced Data Binder プラットフォーム

vRAMcloud

•••

情報制御 連携環境

データ可視化

データ仮想化

データ並列化

データ抽象化

Big Data

運行情報 人の移動

メールログ

業務データ

通話ログ

天候-気象

人間による価値創造とそれを支えるIT

理念・事業上の目的・目標(価値基準、価値探索の視点)

新たな価値創造

人間の 創造性

ITによる 情報の収集・煎じ詰め

情報の山 ビッグデータ

人が担う

- ・価値観を持つ
- •新しい物語を創造する
- •アイデアを発想する
- ・改善の余地に気付く

ITが担う

- ・膨大なデータを蓄える、変換する
- ・高速に反応する
- ・検索・集約・集計する
- データの相関や、変化を検出する

価値創造は人間が行う - ITは道具である

他社商品名・商標などの引用に関する表示

•その他記載の会社名、製品名は、それぞれの会社の商標もしくは登録商標です。

END

日立のビッグデータ利活用へのアプローチ

2012/11/9

株式会社 日立製作所 情報・通信システム社 スマート情報システム統括本部

安田 誠