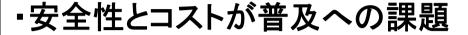

日立のリチウムイオン電池事業の取り組み -グリーン社会の創出をめざして-

2009年4月17日 株式会社日立製作所 執行役専務 電池事業推進本部長 長谷川 泰二

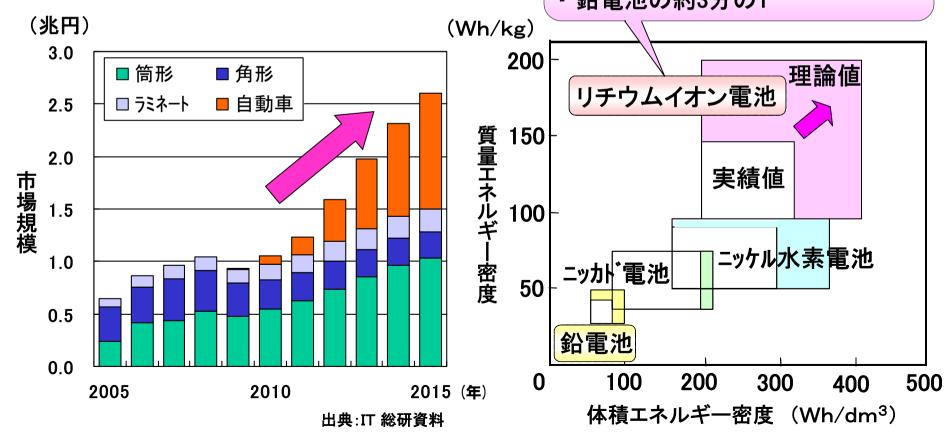
社会の動向

グリーン・モビリティ、新エネルギーで蓄電技術への期待が本格化

社会イノベーション事業を支える「電池」


モーター、インバーターと並ぶ第3のデバイスコアとしての「電池」

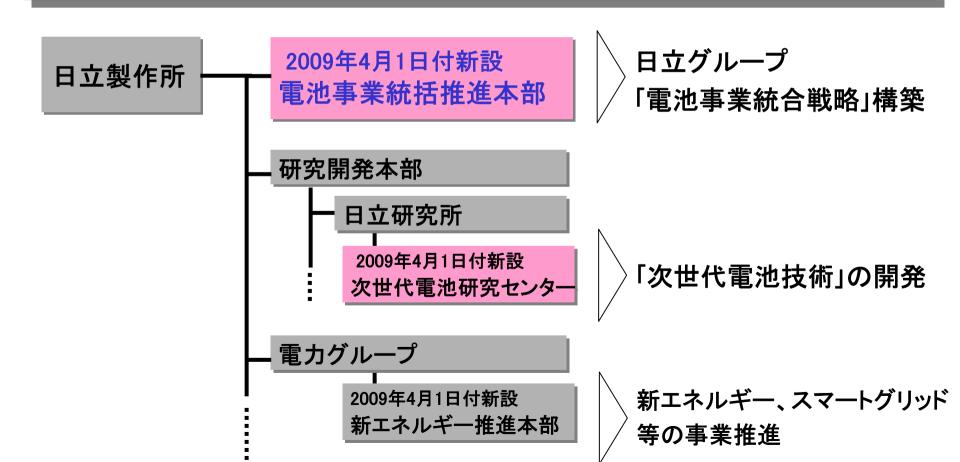
リチウムイオン電池への期待と課題



・軽量&高エネルギー密度が特徴、民生用から中大型用に広がり

リチウムイオン電池の体積、重量は

- ・ニッケル水素電池の約2分の1
- ・鉛電池の約3分の1



2009年4月1日付新設日立グループ電池事業の戦略統括組織

ミッション

- 1. 電池事業における日立グループ協創の強化
- 2. リチウムイオン電池新用途開拓の推進

日立グループの電池事業の強み

1. 独自の電極構成(材料、分散、塗布)

- ・民生用リチウムイオン電池のリコールゼロ実績〔1996から累積6億セル出荷〕
- ・車載用リチウムイオン電池の先駆的商品化〔2000から累積60万セル出荷〕

2. 電池セルとその周辺ビジネスを全域カバー

- ーリチウムイオン電池は制御を要する「電子機器」ー
- ・設備、材料、セル、モジュール(制御)、蓄電システム、電源ソリューションに対応

3. 「電池」をコアとするシステムビジネスの創生

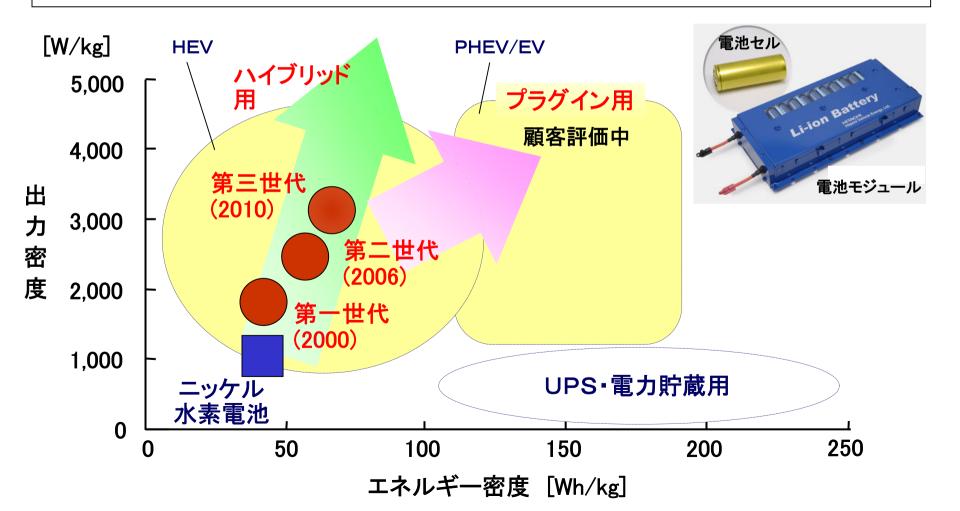
- ・車載用リチウムイオン電池を、鉄道車両など自社強み分野に展開
- 新エネルギー、スマートグリッドなど社会的要請に応える新用途の開拓

電極の塗布技術

- ・独自の塗料分散、塗布技術による 高速・高精度 な電極生産
- ◆世界最高レベルの電極新工場

2009年2月13日竣工 日立マクセル

- ・磁気テープで培った塗料分散、塗布技術
- ・月産4,000万個相当の電極生産能力(民生用電池換算)
- ・民生用に加え、日立ビークルエナジーのハイブリッド自動車用電池の電極を生産



新工場の外観(京都事業所内) 鉄骨2階建、延べ床面積1万5,000m²

車載用電池の開発

- •マンガン系をベースに独自電極材料でエネルギー密度を向上
- ・競争力ある材料コスト(対コバルト)、高い安全性(材料、電池設計)

日立グループの総合力

電池システム

日立の総合力を活かす ソリューションの提供

モジュール・制御システム多様な分野での事業展開実績

電池パック・セル

自動車・産業・民生 全ての分野で製品提供

自動車用で唯一の量産実績

高性能材料

材料レベルからの品質設計

製造設備

製造技術の蓄積

研究開発

イノベーションエンジンとしての研究開発

分野別の事業実績

電池事業マップ

日立グループの総合力で、世界No.1のリチウムイオン電池をめざしています

製造設備

日立プラント テクノロジー

日立設備 エンジニアリング

日立エンジニアリング ・アンド・サービス 材料

日立電線

日立金属

日立化成工業

日立粉末冶金

電極他

日立マクセル

電池本体

日立ビークルエナジー

新神戸電機

電池応用
社会イノベーション分野

日立製作所

電力システム

交通システム

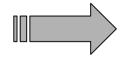
都市開発

日立建機

日立工機

日立 アプライアンス

電池の主な国内生産拠点


民生用電池

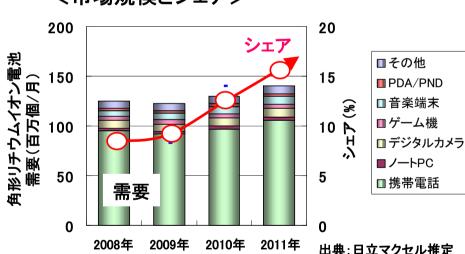
- ・携帯電話向けは成熟期へ(高機能機と普及機の二極化)
- ・デジタルカメラ、ゲーム機、PND向けは底堅く推移

PND: Personal Navigation Device

売上規模 300億円(2007年度)

500億円(2011年度)

◆角形リチウムイオン電池

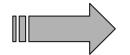

薄型•高容量&安全性

リコールゼロ

- ・高容量脱コバルト系正極材料の開発
- ・高容量ハイブリッド負極の開発
- ・独自耐熱セパレータの採用
- 薄型(4mm厚)1.5Ah級セルの開発

適用製品	量産実績	取扱会社
携帯電話	◎:量産中	日立マクセル
ゲーム機	◎:量産中	日立マクセル

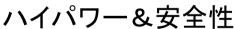
<市場規模とシェア>


適用製品	量産実績	取扱会社
デジタルカメラ	◎:量産中	日立マクセル
PND	◎:量産中	日立マクセル

民生用からの展開

- ・電動工具はニカド、ニッケル水素電池からリチウムイオン電池へシフトが進む
- ・小型軽量化なリチウムイオン電池により、エンジン駆動システムの電動化が進む

売上規模 1,000万円(2007年度)



150億円(2011年度)

◆ハイパワータイプ円筒形電池

◆10Ah級ラミネート形電池

- 高分散低抵抗電極の採用
- 熱安定性に優れた活物質

大容量・パワー&安全性

- ・独自積層構造による安全設計
- ・用途による活物質の最適選択

適用製品	量産実績	取扱会社	適用製品	量産実績	取扱会社
電動工具	◎:量産中	日立マクセル	移動式計測システム	開発中	日立マクセル
園芸工具	◎:量産中	日立マクセル	電動二輪車	開発中	日立マクセル

自動車用電池

・ハイブリッド車向けに市場拡大、2015年にはリチウムイオン電池主流の動き

売上規模(事業目標) 約1,000億円(2015年度)

◆ハイブリッド車用電池2000年、販売開始世界に先駆け市販車両に採用

2006年、第二世代製品を開発 性能を従来比1.5倍向上

- ◆電気自動車用電池 2000年 販売
- ◆プラグイン用電池 顧客評価中

第一世代電池 (外観)

第二世代電池 (外観)

- •60万セルの実績
- •累計投資150億円
- ・月産30万セルライン完成間近

適用製品	量産実績	取扱会社
電気自動車	〇:売上実績	日立 ビークルエナジー

自動車用リチウムイオン電池の販売実績

ハイブリッド

2000年 日産自動車 ティーノ ハイブリッド

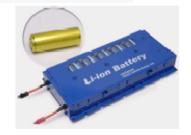
EV

2000年 日産自動車 アルトラEV2000年 日産自動車 Hypermini

ハイブリッド商用車

2005年 いすゞ自動車 エルフ ハイブリッド

2006年 三菱ふそうバス・トラック キャンター エコハイブリッド


2007年 Eaton社 HEVトラック

2007年 三菱ふそうバス・トラック エアロスター エコハイブリッド

- 環境対応新技術のグローバル市場投入
- ・GMハイブリッド車向けモータ・インバータ納入、 リチウムイオン電池大型受注(2010年から10万台分/年納入)

産業用電池への展開

- ・大容量・高出力用途の一部が、鉛蓄電池からリチウムイオン電池に代替
- ・新産業用電池市場創出の動き (ハイブリッドトレイン、産業機械の駆動用途など)

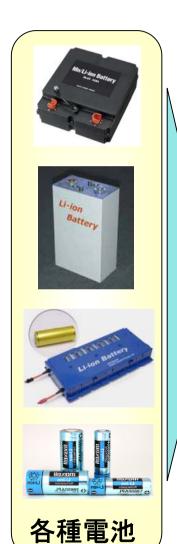
売上規模(予測) 約130億円(2015年度)

・電池システム、メンテナンスサービスを提案

◆バックアップ電源用電池

2009年3月4日発表

- ・IT機器用電源システム向け NTTファシリティーズと共同開発
- •難燃規格UL94-V0相当を達成
- ・フロート(常時充電)仕様で10年の長寿命
- -鉛電池比 体積、重量約60%減



適用製品	量産実績	取扱会社
鉄道: ディーゼルハイブリッド車両	◎:量産中	新神戸電機
鉄道: 地上蓄電池(B-CHOP)	◎:量産中	新神戸電機
情報通信: IT装置バックアップ電源	開発済	新神戸電機

適用製品	量産実績	取扱会社
建設機械	開発中	新神戸電機
新エネルキー電力貯蔵: 風力・太陽光等	開発中	新神戸電機

社会イノベーション事業への展開

電動化、蓄電技術でグリーン社会の基盤を構築

情報通信用

UPS (無停電電源)

UPS: Uninterruptible Power System

產業機械用

鉄道車両 フォークリフト 建設機械

電力貯蔵用

新エネルギー 風力、太陽光 スマートグリッド

鉄道車両への適用事例

○ハイブリッド鉄道車両

- ·JR東日本 小海線 世界初の営業運転
- ・燃費を10%改善
- 騒音 約30dB減(駅停車のエンジン停止)
- •排気有害物質 約60%減

- *ハイブリッド駆動システムはJR東日本と共同開発
- *JR東日本 従来ディーゼル気動車との比較
- ○英国IEPプロジェクト優先交渉権獲得

2009年2月12日発表

- -2013年から2018年末までに、最大1,400両の車両を新規導入予定
- 非電化区間用車両にハイブリッドシステムを搭載

IEP:Intercity Express Program

電池を支える材料・設備

電池を支える材料・設備

電池材料事業

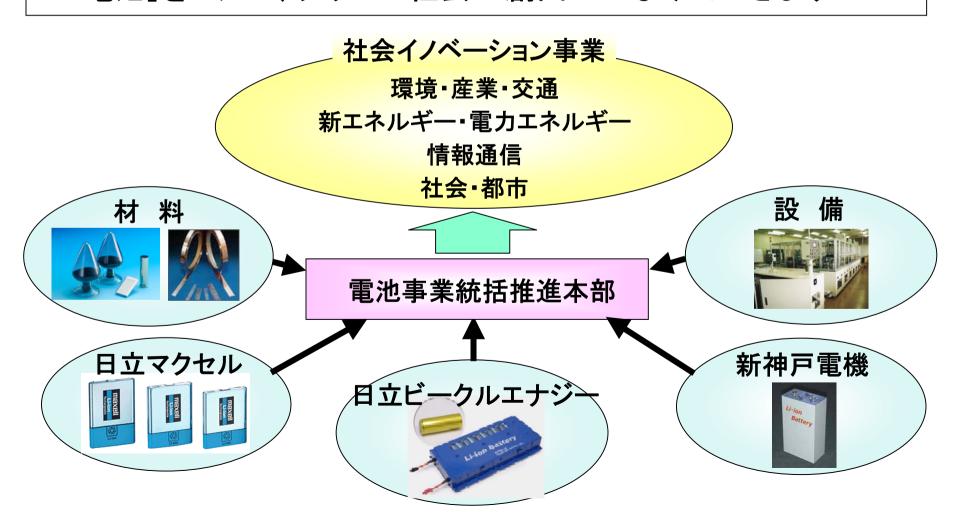
材料レベルから 電池の性能・安全確保に貢献

- ◆負極材用カーボン 1998年販売開始 世界シェア1位 人造黒鉛系・天然黒鉛系
- ◆電極用圧延銅箔

電池製造設備

製造設備技術を グループ内に保有

- ◆高速自動組立機・注液/レーザー溶接装置 国内外の有力電池メーカーへの製造装置納入実績
- ◆高精度電極材圧延用ロールプレスライン設備



まとめ

まとめ

- •日立グループ協創で「電池」の高度化をめざします
- ・「電池」をコアに、グリーン社会の創出につなげていきます

